mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-12 22:46:15 +08:00
358 lines
13 KiB
Python
358 lines
13 KiB
Python
import asyncio
|
|
import os
|
|
from typing import AsyncGenerator, Dict, List, Mapping, Optional, Type, Union
|
|
|
|
from vllm.config import ModelConfig, VllmConfig
|
|
from vllm.engine.arg_utils import AsyncEngineArgs
|
|
from vllm.engine.protocol import EngineClient
|
|
from vllm.inputs import INPUT_REGISTRY, InputRegistry, PromptType
|
|
from vllm.inputs.preprocess import InputPreprocessor
|
|
from vllm.logger import init_logger
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.outputs import RequestOutput
|
|
from vllm.pooling_params import PoolingParams
|
|
from vllm.prompt_adapter.request import PromptAdapterRequest
|
|
from vllm.sampling_params import SamplingParams
|
|
from vllm.transformers_utils.tokenizer import AnyTokenizer
|
|
from vllm.transformers_utils.tokenizer_group import init_tokenizer_from_configs
|
|
from vllm.usage.usage_lib import UsageContext
|
|
from vllm.utils import kill_process_tree
|
|
from vllm.v1.engine.core_client import EngineCoreClient
|
|
from vllm.v1.engine.detokenizer import Detokenizer
|
|
from vllm.v1.engine.processor import Processor
|
|
from vllm.v1.executor.abstract import Executor
|
|
from vllm.v1.metrics.loggers import LoggingStatLogger, StatLoggerBase
|
|
from vllm.v1.metrics.stats import SchedulerStats
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class AsyncLLM(EngineClient):
|
|
|
|
def __init__(
|
|
self,
|
|
vllm_config: VllmConfig,
|
|
executor_class: Type[Executor],
|
|
log_stats: bool,
|
|
usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
|
|
input_registry: InputRegistry = INPUT_REGISTRY,
|
|
use_cached_outputs: bool = False,
|
|
log_requests: bool = True,
|
|
start_engine_loop: bool = True,
|
|
) -> None:
|
|
|
|
assert start_engine_loop
|
|
|
|
self.log_requests = log_requests
|
|
self.log_stats = log_stats
|
|
self.stat_loggers: List[StatLoggerBase] = [
|
|
LoggingStatLogger(),
|
|
# TODO(rob): PrometheusStatLogger(),
|
|
]
|
|
self.model_config = vllm_config.model_config
|
|
|
|
# Tokenizer (+ ensure liveness if running in another process).
|
|
self.tokenizer = init_tokenizer_from_configs(
|
|
model_config=vllm_config.model_config,
|
|
scheduler_config=vllm_config.scheduler_config,
|
|
parallel_config=vllm_config.parallel_config,
|
|
lora_config=vllm_config.lora_config)
|
|
self.tokenizer.ping()
|
|
|
|
# Request streams (map of request_id -> queue).
|
|
self.rid_to_queue: Dict[str, asyncio.Queue] = {}
|
|
|
|
# Processor (converts Inputs --> EngineCoreRequests).
|
|
self.processor = Processor(
|
|
model_config=vllm_config.model_config,
|
|
cache_config=vllm_config.cache_config,
|
|
lora_config=vllm_config.lora_config,
|
|
tokenizer=self.tokenizer,
|
|
input_registry=input_registry,
|
|
)
|
|
|
|
# Detokenizer (converts EngineCoreOutputs --> RequestOutput).
|
|
self.detokenizer = Detokenizer(
|
|
tokenizer_name=vllm_config.model_config.tokenizer,
|
|
tokenizer_mode=vllm_config.model_config.tokenizer_mode,
|
|
trust_remote_code=vllm_config.model_config.trust_remote_code,
|
|
revision=vllm_config.model_config.tokenizer_revision,
|
|
)
|
|
|
|
# EngineCore (starts the engine in background process).
|
|
self.engine_core = EngineCoreClient.make_client(
|
|
multiprocess_mode=True,
|
|
asyncio_mode=True,
|
|
vllm_config=vllm_config,
|
|
executor_class=executor_class,
|
|
)
|
|
|
|
self.output_handler: Optional[asyncio.Task] = None
|
|
|
|
@classmethod
|
|
def from_engine_args(
|
|
cls,
|
|
engine_args: AsyncEngineArgs,
|
|
engine_config: Optional[VllmConfig] = None,
|
|
start_engine_loop: bool = True,
|
|
usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
|
|
) -> "AsyncLLM":
|
|
"""Create an AsyncLLM from the EngineArgs."""
|
|
|
|
# Create the engine configs.
|
|
if engine_config is None:
|
|
vllm_config = engine_args.create_engine_config(usage_context)
|
|
else:
|
|
vllm_config = engine_config
|
|
|
|
executor_class = Executor.get_class(vllm_config)
|
|
|
|
# Create the AsyncLLM.
|
|
return cls(
|
|
vllm_config=vllm_config,
|
|
executor_class=executor_class,
|
|
log_requests=not engine_args.disable_log_requests,
|
|
log_stats=not engine_args.disable_log_stats,
|
|
start_engine_loop=start_engine_loop,
|
|
usage_context=usage_context,
|
|
)
|
|
|
|
def shutdown(self):
|
|
"""Shutdown, cleaning up the background proc and IPC."""
|
|
|
|
if engine_core := getattr(self, "engine_core", None):
|
|
engine_core.shutdown()
|
|
|
|
if handler := getattr(self, "output_handler", None):
|
|
handler.cancel()
|
|
|
|
async def add_request(
|
|
self,
|
|
request_id: str,
|
|
prompt: PromptType,
|
|
params: Union[SamplingParams, PoolingParams],
|
|
arrival_time: Optional[float] = None,
|
|
lora_request: Optional[LoRARequest] = None,
|
|
trace_headers: Optional[Mapping[str, str]] = None,
|
|
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
|
priority: int = 0,
|
|
) -> asyncio.Queue[RequestOutput]:
|
|
"""Add new request to the AsyncLLM."""
|
|
|
|
# 1) Create a new output queue for the request.
|
|
if request_id in self.rid_to_queue:
|
|
raise ValueError(f"Request id {request_id} already running.")
|
|
self.rid_to_queue[request_id] = asyncio.Queue()
|
|
|
|
# 2) Convert Input --> Request.
|
|
request = self.processor.process_inputs(request_id, prompt, params,
|
|
arrival_time, lora_request,
|
|
trace_headers,
|
|
prompt_adapter_request,
|
|
priority)
|
|
|
|
# 3) Add the request to Detokenizer (this process).
|
|
self.detokenizer.add_request(request)
|
|
|
|
# 4) Add the EngineCoreRequest to EngineCore (separate process).
|
|
await self.engine_core.add_request_async(request)
|
|
|
|
if self.log_requests:
|
|
logger.info("Added request %s.", request_id)
|
|
|
|
return self.rid_to_queue[request_id]
|
|
|
|
# TODO: we should support multiple prompts in one call, as you
|
|
# can do with LLM.generate. So that for multi-prompt completion
|
|
# requests we don't need to send multiple messages to core proc,
|
|
# and so we don't need multiple streams which then get
|
|
# re-multiplexed in the API server anyhow.
|
|
async def generate(
|
|
self,
|
|
prompt: PromptType,
|
|
sampling_params: SamplingParams,
|
|
request_id: str,
|
|
lora_request: Optional[LoRARequest] = None,
|
|
trace_headers: Optional[Mapping[str, str]] = None,
|
|
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
|
|
priority: int = 0,
|
|
) -> AsyncGenerator[RequestOutput, None]:
|
|
"""
|
|
Main function called by the API server to kick off a request
|
|
* 1) Making an AsyncStream corresponding to the Request.
|
|
* 2) Processing the Input.
|
|
* 3) Adding the Request to the Detokenizer.
|
|
* 4) Adding the Request to the EngineCore (separate process).
|
|
|
|
A separate output_handler loop runs in a background AsyncIO task,
|
|
pulling outputs from EngineCore and putting them into the
|
|
per-request AsyncStream.
|
|
|
|
The caller of generate() iterates the returned AsyncGenerator,
|
|
returning the RequestOutput back to the caller.
|
|
"""
|
|
|
|
try:
|
|
# We start the output_handler on the first call to generate() so
|
|
# we can call __init__ before the event loop, which enables us
|
|
# to handle startup failure gracefully in the OpenAI server.
|
|
if self.output_handler is None:
|
|
self.output_handler = asyncio.create_task(
|
|
self._run_output_handler())
|
|
|
|
q = await self.add_request(
|
|
request_id,
|
|
prompt,
|
|
sampling_params,
|
|
lora_request=lora_request,
|
|
trace_headers=trace_headers,
|
|
prompt_adapter_request=prompt_adapter_request,
|
|
priority=priority,
|
|
)
|
|
|
|
# The output_handler task pushes items into the queue.
|
|
# This task pulls from the queue and yields to caller.
|
|
while True:
|
|
# Note: drain queue without await if possible (avoids
|
|
# task switching under load which helps performance).
|
|
out = q.get_nowait() if q.qsize() > 0 else await q.get()
|
|
|
|
# Note: both Detokenizer and EngineCore handle their
|
|
# own request cleanup based on finished.
|
|
if out.finished:
|
|
del self.rid_to_queue[request_id]
|
|
yield out
|
|
break
|
|
|
|
yield out
|
|
|
|
# If the request is disconnected by the client, the
|
|
# generate() task will be canceled. So, we abort the
|
|
# request if we end up here.
|
|
except asyncio.CancelledError:
|
|
await self.abort(request_id)
|
|
raise
|
|
|
|
def _process_request_outputs(self, request_outputs: List[RequestOutput]):
|
|
"""Process outputs by putting them into per-request queues."""
|
|
|
|
for request_output in request_outputs:
|
|
request_id = request_output.request_id
|
|
|
|
# Note: it is possible a request was aborted and removed from
|
|
# the state due to client cancellations, so if we encounter a
|
|
# request id not in the state, we skip.
|
|
if request_id in self.rid_to_queue:
|
|
self.rid_to_queue[request_id].put_nowait(request_output)
|
|
|
|
async def _run_output_handler(self):
|
|
"""Background loop: pulls from EngineCore and pushes to AsyncStreams."""
|
|
|
|
try:
|
|
while True:
|
|
# 1) Pull EngineCoreOutput from the EngineCore.
|
|
outputs = await self.engine_core.get_output_async()
|
|
|
|
# 2) Detokenize based on the output.
|
|
request_outputs, reqs_to_abort = self.detokenizer.step(
|
|
outputs.outputs)
|
|
|
|
# 3) Put the RequestOutputs into the per-request queues.
|
|
self._process_request_outputs(request_outputs)
|
|
|
|
# 4) Abort any requests that finished due to stop strings.
|
|
await self.engine_core.abort_requests_async(reqs_to_abort)
|
|
|
|
# 5) Log any stats.
|
|
await self._log_stats(scheduler_stats=outputs.scheduler_stats)
|
|
|
|
except Exception as e:
|
|
logger.exception("EngineCore output handler hit an error: %s", e)
|
|
kill_process_tree(os.getpid())
|
|
|
|
async def abort(self, request_id: str) -> None:
|
|
"""Abort RequestId in self, detokenizer, and engine core."""
|
|
|
|
request_ids = [request_id]
|
|
await self.engine_core.abort_requests_async(request_ids)
|
|
self.detokenizer.abort_requests(request_ids)
|
|
|
|
# If a request finishes while we await then the request_id
|
|
# will be removed from the tracked queues before we get here.
|
|
if request_id in self.rid_to_queue:
|
|
del self.rid_to_queue[request_id]
|
|
|
|
async def _log_stats(self, scheduler_stats: SchedulerStats):
|
|
"""Log stats to the stat loggers."""
|
|
if not self.log_stats:
|
|
return
|
|
|
|
for logger in self.stat_loggers:
|
|
logger.log(scheduler_stats=scheduler_stats)
|
|
|
|
def encode(
|
|
self,
|
|
prompt: PromptType,
|
|
pooling_params: PoolingParams,
|
|
request_id: str,
|
|
lora_request: Optional[LoRARequest] = None,
|
|
trace_headers: Optional[Mapping[str, str]] = None,
|
|
priority: int = 0,
|
|
):
|
|
raise ValueError("Not Supported on V1 yet.")
|
|
|
|
async def get_model_config(self) -> ModelConfig:
|
|
return self.model_config
|
|
|
|
async def get_decoding_config(self):
|
|
raise ValueError("Not Supported on V1 yet.")
|
|
|
|
async def get_input_preprocessor(self) -> InputPreprocessor:
|
|
return self.processor.input_preprocessor
|
|
|
|
async def get_tokenizer(
|
|
self,
|
|
lora_request: Optional[LoRARequest] = None,
|
|
) -> AnyTokenizer:
|
|
assert lora_request is None
|
|
return self.detokenizer.tokenizer
|
|
|
|
async def is_tracing_enabled(self) -> bool:
|
|
return False
|
|
|
|
async def do_log_stats(
|
|
self,
|
|
scheduler_outputs=None,
|
|
model_output=None,
|
|
) -> None:
|
|
logger.debug("Called do_log_stats.")
|
|
|
|
async def check_health(self) -> None:
|
|
logger.debug("Called check_health.")
|
|
|
|
async def start_profile(self) -> None:
|
|
await self.engine_core.profile_async(True)
|
|
|
|
async def stop_profile(self) -> None:
|
|
await self.engine_core.profile_async(False)
|
|
|
|
@property
|
|
def is_running(self) -> bool:
|
|
return True
|
|
|
|
@property
|
|
def is_stopped(self) -> bool:
|
|
return False
|
|
|
|
@property
|
|
def errored(self) -> bool:
|
|
return False
|
|
|
|
@property
|
|
def dead_error(self) -> BaseException:
|
|
return Exception() # TODO: implement
|
|
|
|
async def add_lora(self, lora_request: LoRARequest) -> None:
|
|
"""Load a new LoRA adapter into the engine for future requests."""
|
|
raise NotImplementedError("LoRA not yet supported in V1")
|