Matthew Bonanni 314fa8abbf
[Attention] Tune CUTLASS MLA num_splits (#26846)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-10-16 06:36:09 -07:00

386 lines
13 KiB
C++

/***************************************************************************************************
* Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
*this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
*ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
*LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
*CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
*SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
*INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
*CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
*ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
*POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*
* Taken from SGLANG PR https://github.com/sgl-project/sglang/pull/6929
* by Alcanderian JieXin Liang
*/
/*!
\file
\brief An universal device layer for cutlass 3.x-style kernels.
*/
// clang-format off
#pragma once
// common
#include "cutlass/cutlass.h"
#include "cutlass/device_kernel.h"
#if !defined(__CUDACC_RTC__)
#include "cutlass/cluster_launch.hpp"
#include "cutlass/trace.h"
#endif // !defined(__CUDACC_RTC__)
#include "../kernel/sm100_fmha_mla_tma_warpspecialized.hpp"
#include "../kernel/sm100_fmha_mla_reduction.hpp"
////////////////////////////////////////////////////////////////////////////////
namespace cutlass::fmha::device {
using namespace cute;
using namespace cutlass::fmha::kernel;
////////////////////////////////////////////////////////////////////////////////
////////////////////////////// CUTLASS 3.x API /////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
template<
class Kernel_
>
class MLA {
public:
using Kernel = Kernel_;
using ReductionKernel = cutlass::fmha::kernel::Sm100FmhaMlaReductionKernel<
typename Kernel::ElementOut,
typename Kernel::ElementAcc,
typename Kernel::ElementAcc,
Kernel::TileShapeH::value,
Kernel::TileShapeL::value,
256 /*Max split*/
>;
/// Argument structure: User API
using KernelArguments = typename Kernel::Arguments;
using ReductionArguments = typename ReductionKernel::Arguments;
using Arguments = KernelArguments;
/// Argument structure: Kernel API
using KernelParams = typename Kernel::Params;
using ReductionParams = typename ReductionKernel::Params;
struct Params {
KernelParams fmha_params;
ReductionParams reduction_params;
};
private:
/// Kernel API parameters object
Params params_;
bool is_initialized(bool set = false) {
static bool initialized = false;
if (set) initialized = true;
return initialized;
}
static ReductionArguments to_reduction_args(Arguments const& args) {
auto [H, K, D, B] = args.problem_shape;
return ReductionArguments{
nullptr, args.epilogue.ptr_o, nullptr, args.epilogue.ptr_lse,
args.mainloop.softmax_scale, B, args.split_kv, K, args.mainloop.ptr_seq,
args.ptr_split_kv, Kernel::TileShapeS::value
};
}
public:
/// Access the Params structure
Params const& params() const {
return params_;
}
static void set_split_kv (KernelArguments& args) {
if (args.split_kv >= 1) return;
auto [H, K, D, B] = args.problem_shape;
int sm_count = args.hw_info.sm_count;
float seq_length_k = static_cast<float>(K) / 1024.0f;
int max_splits = 1;
if (B <= 4 && seq_length_k >= 16) {
max_splits = 16;
}
else if (B <= 8 && seq_length_k >= 4) {
max_splits = 8;
}
else if ((B <= 16 && seq_length_k >= 8) ||
(B == 48 && seq_length_k >= 32)) {
max_splits = 4;
}
else if ((B <= 32 && seq_length_k >= 16) ||
(B == 96 && seq_length_k >= 16)) {
max_splits = 2;
}
else {
max_splits = 1;
}
// Wave-aware scheduling: ensure integer number of waves in K dimension
int sms_per_batch = max(1, sm_count / B);
int split_heur = min(max_splits, sms_per_batch);
int waves = ceil_div(B * split_heur, sm_count);
int k_waves = ceil_div(max_splits, split_heur);
int split_wave_aware = ceil_div(max_splits, k_waves);
args.split_kv = split_wave_aware;
}
/// Determines whether the GEMM can execute the given problem.
static Status
can_implement(Arguments const& args) {
if (! Kernel::can_implement(args)) {
return Status::kInvalid;
}
if (! ReductionKernel::can_implement(to_reduction_args(args))) {
return Status::kInvalid;
}
return Status::kSuccess;
}
/// Gets the workspace size
static size_t
get_workspace_size(Arguments const& args) {
size_t workspace_bytes = 0;
workspace_bytes += Kernel::get_workspace_size(args);
workspace_bytes += ReductionKernel::get_workspace_size(to_reduction_args(args));
return workspace_bytes;
}
/// Computes the maximum number of active blocks per multiprocessor
static int maximum_active_blocks(int /* smem_capacity */ = -1) {
CUTLASS_TRACE_HOST("MLA::maximum_active_blocks()");
int max_active_blocks = -1;
int smem_size = Kernel::SharedStorageSize;
// first, account for dynamic smem capacity if needed
cudaError_t result;
if (smem_size >= (48 << 10)) {
CUTLASS_TRACE_HOST(" Setting smem size to " << smem_size);
result = cudaFuncSetAttribute(
device_kernel<Kernel>,
cudaFuncAttributeMaxDynamicSharedMemorySize,
smem_size);
if (cudaSuccess != result) {
result = cudaGetLastError(); // to clear the error bit
CUTLASS_TRACE_HOST(
" cudaFuncSetAttribute() returned error: "
<< cudaGetErrorString(result));
return -1;
}
}
// query occupancy after setting smem size
result = cudaOccupancyMaxActiveBlocksPerMultiprocessor(
&max_active_blocks,
device_kernel<Kernel>,
Kernel::MaxThreadsPerBlock,
smem_size);
if (cudaSuccess != result) {
result = cudaGetLastError(); // to clear the error bit
CUTLASS_TRACE_HOST(
" cudaOccupancyMaxActiveBlocksPerMultiprocessor() returned error: "
<< cudaGetErrorString(result));
return -1;
}
CUTLASS_TRACE_HOST(" max_active_blocks: " << max_active_blocks);
return max_active_blocks;
}
/// Initializes GEMM state from arguments.
Status
initialize(Arguments const& args, void* workspace = nullptr, cudaStream_t stream = nullptr) {
CUTLASS_TRACE_HOST("MLA::initialize() - workspace "
<< workspace << ", stream: " << (stream ? "non-null" : "null"));
// Initialize the workspace
Status status = Kernel::initialize_workspace(args, workspace, stream);
if (status != Status::kSuccess) {
return status;
}
status = ReductionKernel::initialize_workspace(to_reduction_args(args), workspace, stream);
if (status != Status::kSuccess) {
return status;
}
KernelParams kernel_params = Kernel::to_underlying_arguments(args, workspace);
ReductionArguments reduction_args = to_reduction_args(args);
if (reduction_args.split_kv > 1) {
reduction_args.ptr_oaccum = kernel_params.epilogue.ptr_o_acc;
reduction_args.ptr_lseaccum = kernel_params.epilogue.ptr_lse_acc;
}
ReductionParams reduction_params = ReductionKernel::to_underlying_arguments(reduction_args, workspace);
// Initialize the Params structure
params_ = Params {kernel_params, reduction_params};
if (is_initialized()) return Status::kSuccess;
// account for dynamic smem capacity if needed
// no dynamic smem is needed for reduction kernel
int smem_size = Kernel::SharedStorageSize;
if (smem_size >= (48 << 10)) {
CUTLASS_TRACE_HOST(" Setting smem size to " << smem_size);
cudaError_t result = cudaFuncSetAttribute(
device_kernel<Kernel>,
cudaFuncAttributeMaxDynamicSharedMemorySize,
smem_size);
if (cudaSuccess != result) {
result = cudaGetLastError(); // to clear the error bit
CUTLASS_TRACE_HOST(" cudaFuncSetAttribute() returned error: " << cudaGetErrorString(result));
return Status::kErrorInternal;
}
}
is_initialized(true);
return Status::kSuccess;
}
/// Update API is preserved in 3.0, but does not guarantee a lightweight update of params.
Status
update(Arguments const& args, void* workspace = nullptr) {
CUTLASS_TRACE_HOST("MLA()::update() - workspace: " << workspace);
size_t workspace_bytes = get_workspace_size(args);
if (workspace_bytes > 0 && nullptr == workspace) {
return Status::kErrorWorkspaceNull;
}
auto fmha_params = Kernel::to_underlying_arguments(args, workspace);
ReductionArguments reduction_args = to_reduction_args(args);
if (reduction_args.split_kv > 1) {
reduction_args.ptr_oaccum = fmha_params.epilogue.ptr_o_acc;
reduction_args.ptr_lseaccum = fmha_params.epilogue.ptr_lse_acc;
}
ReductionParams reduction_params = ReductionKernel::to_underlying_arguments(reduction_args, workspace);
// Initialize the Params structure
params_ = Params {fmha_params, reduction_params};
return Status::kSuccess;
}
/// Primary run() entry point API that is static allowing users to create and manage their own params.
/// Supplied params struct must be construct by calling Kernel::to_underling_arguments()
static Status
run(Params& params, cudaStream_t stream = nullptr) {
CUTLASS_TRACE_HOST("MLA::run()");
dim3 const block = Kernel::get_block_shape();
dim3 const grid = Kernel::get_grid_shape(params.fmha_params);
// configure smem size and carveout
int smem_size = Kernel::SharedStorageSize;
Status launch_result;
// Use extended launch API only for mainloops that use it
if constexpr(Kernel::ArchTag::kMinComputeCapability >= 90) {
dim3 cluster(cute::size<0>(typename Kernel::ClusterShape{}),
cute::size<1>(typename Kernel::ClusterShape{}),
cute::size<2>(typename Kernel::ClusterShape{}));
void const* kernel = (void const*) device_kernel<Kernel>;
void* kernel_params[] = {&params.fmha_params};
launch_result = ClusterLauncher::launch(grid, cluster, block, smem_size, stream, kernel, kernel_params);
}
else {
launch_result = Status::kSuccess;
device_kernel<Kernel><<<grid, block, smem_size, stream>>>(params.fmha_params);
}
cudaError_t result = cudaGetLastError();
if (cudaSuccess != result or Status::kSuccess != launch_result) {
//return Status::kSuccess;
CUTLASS_TRACE_HOST(" Kernel launch failed. Reason: " << result);
return Status::kErrorInternal;
}
if (params.reduction_params.split_kv > 1) {
// launch reduction kernel
dim3 const block = ReductionKernel::get_block_shape();
dim3 const grid = ReductionKernel::get_grid_shape(params.reduction_params);
device_kernel<ReductionKernel><<<grid, block, 0, stream>>>(params.reduction_params);
cudaError_t result = cudaGetLastError();
if (cudaSuccess == result) {
return Status::kSuccess;
}
else {
CUTLASS_TRACE_HOST(" Kernel launch failed. Reason: " << result);
return Status::kErrorInternal;
}
}
else {
return Status::kSuccess;
}
}
//
// Non-static launch overloads that first create and set the internal params struct of this kernel handle.
//
/// Launches the kernel after first constructing Params internal state from supplied arguments.
Status
run(Arguments const& args, void* workspace = nullptr, cudaStream_t stream = nullptr) {
Status status = initialize(args, workspace, stream);
if (Status::kSuccess == status) {
status = run(params_, stream);
}
return status;
}
/// Launches the kernel after first constructing Params internal state from supplied arguments.
Status
operator()(Arguments const& args, void* workspace = nullptr, cudaStream_t stream = nullptr) {
return run(args, workspace, stream);
}
/// Overload that allows a user to re-launch the same kernel without updating internal params struct.
Status
run(cudaStream_t stream = nullptr) {
return run(params_, stream);
}
/// Overload that allows a user to re-launch the same kernel without updating internal params struct.
Status
operator()(cudaStream_t stream = nullptr) {
return run(params_, stream);
}
};
////////////////////////////////////////////////////////////////////////////////
} // namespace cutlass::fmha::device
////////////////////////////////////////////////////////////////////////////////