mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-16 15:55:55 +08:00
482 lines
19 KiB
Python
482 lines
19 KiB
Python
# coding=utf-8
|
|
# Adapted from
|
|
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/qwen2_moe/modeling_qwen2_moe.py
|
|
# Copyright 2024 The Qwen team.
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only Qwen2MoE model compatible with HuggingFace weights."""
|
|
from typing import Any, Dict, Iterable, List, Optional, Tuple
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
from transformers import PretrainedConfig
|
|
|
|
from vllm.attention import Attention, AttentionMetadata
|
|
from vllm.config import CacheConfig
|
|
from vllm.distributed import (get_tensor_model_parallel_world_size,
|
|
tensor_model_parallel_all_reduce)
|
|
from vllm.model_executor.layers.activation import SiluAndMul
|
|
from vllm.model_executor.layers.fused_moe import FusedMoE
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
ReplicatedLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization.base_config import (
|
|
QuantizationConfig)
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.layers.sampler import Sampler
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead, VocabParallelEmbedding)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
from vllm.sequence import IntermediateTensors, SamplerOutput
|
|
from vllm.utils import print_warning_once
|
|
|
|
|
|
class Qwen2MoeMLP(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
intermediate_size: int,
|
|
hidden_act: str,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
reduce_results: bool = True,
|
|
) -> None:
|
|
super().__init__()
|
|
self.gate_up_proj = MergedColumnParallelLinear(
|
|
hidden_size, [intermediate_size] * 2,
|
|
bias=False,
|
|
quant_config=quant_config)
|
|
self.down_proj = RowParallelLinear(intermediate_size,
|
|
hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
reduce_results=reduce_results)
|
|
if hidden_act != "silu":
|
|
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
|
"Only silu is supported for now.")
|
|
self.act_fn = SiluAndMul()
|
|
|
|
def forward(self, x):
|
|
gate_up, _ = self.gate_up_proj(x)
|
|
x = self.act_fn(gate_up)
|
|
x, _ = self.down_proj(x)
|
|
return x
|
|
|
|
|
|
class Qwen2MoeSparseMoeBlock(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
):
|
|
super().__init__()
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
|
|
if self.tp_size > config.num_experts:
|
|
raise ValueError(
|
|
f"Tensor parallel size {self.tp_size} is greater than "
|
|
f"the number of experts {config.num_experts}.")
|
|
|
|
self.experts = FusedMoE(num_experts=config.num_experts,
|
|
top_k=config.num_experts_per_tok,
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=config.moe_intermediate_size,
|
|
reduce_results=False,
|
|
renormalize=config.norm_topk_prob,
|
|
quant_config=quant_config)
|
|
|
|
self.gate = ReplicatedLinear(config.hidden_size,
|
|
config.num_experts,
|
|
bias=False,
|
|
quant_config=None)
|
|
if config.shared_expert_intermediate_size > 0:
|
|
self.shared_expert = Qwen2MoeMLP(
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=config.shared_expert_intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
quant_config=quant_config,
|
|
reduce_results=False,
|
|
)
|
|
else:
|
|
self.shared_expert = None
|
|
self.shared_expert_gate = torch.nn.Linear(config.hidden_size,
|
|
1,
|
|
bias=False)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
# NOTE: hidden_states can have either 1D or 2D shape.
|
|
orig_shape = hidden_states.shape
|
|
hidden_dim = hidden_states.shape[-1]
|
|
hidden_states = hidden_states.view(-1, hidden_dim)
|
|
shared_output = None
|
|
if self.shared_expert is not None:
|
|
shared_output = self.shared_expert(hidden_states)
|
|
if self.shared_expert_gate is not None:
|
|
shared_output = F.sigmoid(
|
|
self.shared_expert_gate(hidden_states)) * shared_output
|
|
|
|
# router_logits: (num_tokens, n_experts)
|
|
router_logits, _ = self.gate(hidden_states)
|
|
final_hidden_states = self.experts(hidden_states=hidden_states,
|
|
router_logits=router_logits)
|
|
if shared_output is not None:
|
|
final_hidden_states = final_hidden_states + shared_output
|
|
if self.tp_size > 1:
|
|
final_hidden_states = tensor_model_parallel_all_reduce(
|
|
final_hidden_states)
|
|
|
|
return final_hidden_states.view(orig_shape)
|
|
|
|
|
|
class Qwen2MoeAttention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
num_heads: int,
|
|
num_kv_heads: int,
|
|
rope_theta: float = 10000,
|
|
rope_scaling: Optional[Dict[str, Any]] = None,
|
|
max_position_embeddings: int = 8192,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.hidden_size = hidden_size
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
self.total_num_heads = num_heads
|
|
assert self.total_num_heads % tp_size == 0
|
|
self.num_heads = self.total_num_heads // tp_size
|
|
self.total_num_kv_heads = num_kv_heads
|
|
if self.total_num_kv_heads >= tp_size:
|
|
# Number of KV heads is greater than TP size, so we partition
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert self.total_num_kv_heads % tp_size == 0
|
|
else:
|
|
# Number of KV heads is less than TP size, so we replicate
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert tp_size % self.total_num_kv_heads == 0
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
|
self.head_dim = hidden_size // self.total_num_heads
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
self.scaling = self.head_dim**-0.5
|
|
self.rope_theta = rope_theta
|
|
self.max_position_embeddings = max_position_embeddings
|
|
|
|
self.qkv_proj = QKVParallelLinear(
|
|
hidden_size,
|
|
self.head_dim,
|
|
self.total_num_heads,
|
|
self.total_num_kv_heads,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
)
|
|
|
|
self.o_proj = RowParallelLinear(
|
|
self.total_num_heads * self.head_dim,
|
|
hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
)
|
|
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim,
|
|
max_position=max_position_embeddings,
|
|
base=rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
)
|
|
self.attn = Attention(self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
num_kv_heads=self.num_kv_heads,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.qkv_proj(hidden_states)
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
q, k = self.rotary_emb(positions, q, k)
|
|
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
|
output, _ = self.o_proj(attn_output)
|
|
return output
|
|
|
|
|
|
class Qwen2MoeDecoderLayer(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
layer_idx: int,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
rope_theta = getattr(config, "rope_theta", 10000)
|
|
rope_scaling = getattr(config, "rope_scaling", None)
|
|
max_position_embeddings = getattr(config, "max_position_embeddings",
|
|
8192)
|
|
self.self_attn = Qwen2MoeAttention(
|
|
hidden_size=self.hidden_size,
|
|
num_heads=config.num_attention_heads,
|
|
num_kv_heads=config.num_key_value_heads,
|
|
rope_theta=rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
max_position_embeddings=max_position_embeddings,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
)
|
|
|
|
# Note: Qwen/Qwen2-57B-A14B-Instruct does not have
|
|
# `mlp_only_layers` in the config.
|
|
mlp_only_layers = ([] if not hasattr(config, "mlp_only_layers") else
|
|
config.mlp_only_layers)
|
|
if (layer_idx not in mlp_only_layers) and (
|
|
config.num_experts > 0 and
|
|
(layer_idx + 1) % config.decoder_sparse_step == 0):
|
|
self.mlp = Qwen2MoeSparseMoeBlock(config=config,
|
|
quant_config=quant_config)
|
|
else:
|
|
self.mlp = Qwen2MoeMLP(
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=config.intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
quant_config=quant_config,
|
|
)
|
|
self.input_layernorm = RMSNorm(config.hidden_size,
|
|
eps=config.rms_norm_eps)
|
|
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
|
eps=config.rms_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
residual: Optional[torch.Tensor],
|
|
) -> torch.Tensor:
|
|
# Self Attention
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.input_layernorm(
|
|
hidden_states, residual)
|
|
hidden_states = self.self_attn(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
kv_cache=kv_cache,
|
|
attn_metadata=attn_metadata,
|
|
)
|
|
|
|
# Fully Connected
|
|
hidden_states, residual = self.post_attention_layernorm(
|
|
hidden_states, residual)
|
|
hidden_states = self.mlp(hidden_states)
|
|
return hidden_states, residual
|
|
|
|
|
|
class Qwen2MoeModel(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.padding_idx = config.pad_token_id
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
)
|
|
self.layers = nn.ModuleList([
|
|
Qwen2MoeDecoderLayer(config,
|
|
layer_idx,
|
|
cache_config,
|
|
quant_config=quant_config)
|
|
for layer_idx in range(config.num_hidden_layers)
|
|
])
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.embed_tokens(input_ids)
|
|
residual = None
|
|
for i in range(len(self.layers)):
|
|
layer = self.layers[i]
|
|
hidden_states, residual = layer(positions, hidden_states,
|
|
kv_caches[i], attn_metadata,
|
|
residual)
|
|
hidden_states, _ = self.norm(hidden_states, residual)
|
|
return hidden_states
|
|
|
|
|
|
class Qwen2MoeForCausalLM(nn.Module):
|
|
|
|
fall_back_to_pt_during_load = False
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.config = config
|
|
self.quant_config = quant_config
|
|
self.model = Qwen2MoeModel(config, cache_config, quant_config)
|
|
self.lm_head = ParallelLMHead(config.vocab_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config)
|
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
|
self.sampler = Sampler()
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.model(input_ids, positions, kv_caches,
|
|
attn_metadata)
|
|
return hidden_states
|
|
|
|
def compute_logits(self, hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
|
logits = self.logits_processor(self.lm_head, hidden_states,
|
|
sampling_metadata)
|
|
return logits
|
|
|
|
def sample(
|
|
self,
|
|
logits: Optional[torch.Tensor],
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[SamplerOutput]:
|
|
next_tokens = self.sampler(logits, sampling_metadata)
|
|
return next_tokens
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
("gate_up_proj", "gate_proj", 0),
|
|
("gate_up_proj", "up_proj", 1),
|
|
]
|
|
|
|
# Params for weights, fp8 weight scales, fp8 activation scales
|
|
# (param_name, weight_name, expert_id, shard_id)
|
|
expert_params_mapping = FusedMoE.make_expert_params_mapping(
|
|
ckpt_gate_proj_name="gate_proj",
|
|
ckpt_down_proj_name="down_proj",
|
|
ckpt_up_proj_name="up_proj",
|
|
num_experts=self.config.num_experts)
|
|
|
|
params_dict = dict(self.named_parameters())
|
|
for name, loaded_weight in weights:
|
|
if "rotary_emb.inv_freq" in name:
|
|
continue
|
|
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
|
# Skip non-stacked layers and experts (experts handled below).
|
|
if weight_name not in name:
|
|
continue
|
|
# We have mlp.experts[0].gate_proj in the checkpoint.
|
|
# Since we handle the experts below in expert_params_mapping,
|
|
# we need to skip here BEFORE we update the name, otherwise
|
|
# name will be updated to mlp.experts[0].gate_up_proj, which
|
|
# will then be updated below in expert_params_mapping
|
|
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
|
|
if "mlp.experts" in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
if name not in params_dict:
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
for mapping in expert_params_mapping:
|
|
param_name, weight_name, expert_id, shard_id = mapping
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param,
|
|
loaded_weight,
|
|
weight_name,
|
|
shard_id=shard_id,
|
|
expert_id=expert_id)
|
|
break
|
|
else:
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
# Remapping the name of FP8 kv-scale.
|
|
if name.endswith("kv_scale"):
|
|
remapped_kv_scale_name = name.replace(
|
|
".kv_scale", ".attn.kv_scale")
|
|
if remapped_kv_scale_name not in params_dict:
|
|
print_warning_once(
|
|
"Found kv scale in the checkpoint "
|
|
f"(e.g. {name}), but not found the expected "
|
|
f"name in the model "
|
|
f"(e.g. {remapped_kv_scale_name}). "
|
|
"kv-scale is not loaded.")
|
|
continue
|
|
else:
|
|
name = remapped_kv_scale_name
|
|
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|