vllm/vllm/entrypoints/openai/logits_processors.py

86 lines
3.0 KiB
Python

from functools import lru_cache, partial
from typing import Dict, FrozenSet, Iterable, List, Optional, Union
import torch
from transformers import PreTrainedTokenizer
from vllm.sampling_params import LogitsProcessor
class AllowedTokenIdsLogitsProcessor:
"""Logits processor for constraining generated tokens to a
specific set of token ids."""
def __init__(self, allowed_ids: Iterable[int]):
self.allowed_ids: Optional[List[int]] = list(allowed_ids)
self.mask: Optional[torch.Tensor] = None
def __call__(self, token_ids: List[int],
logits: torch.Tensor) -> torch.Tensor:
if self.mask is None:
self.mask = torch.ones((logits.shape[-1], ),
dtype=torch.bool,
device=logits.device)
self.mask[self.allowed_ids] = False
self.allowed_ids = None
logits.masked_fill_(self.mask, float("-inf"))
return logits
@lru_cache(maxsize=32)
def _get_allowed_token_ids_logits_processor(
allowed_token_ids: FrozenSet[int],
vocab_size: int,
) -> LogitsProcessor:
if not allowed_token_ids:
raise ValueError("Empty allowed_token_ids provided")
if not all(0 <= tid < vocab_size for tid in allowed_token_ids):
raise ValueError("allowed_token_ids contains "
"out-of-vocab token id")
return AllowedTokenIdsLogitsProcessor(allowed_token_ids)
def logit_bias_logits_processor(
logit_bias: Dict[int, float],
token_ids: List[int],
logits: torch.Tensor,
) -> torch.Tensor:
for token_id, bias in logit_bias.items():
logits[token_id] += bias
return logits
def get_logits_processors(
logit_bias: Optional[Union[Dict[int, float], Dict[str, float]]],
allowed_token_ids: Optional[List[int]],
tokenizer: PreTrainedTokenizer) -> List[LogitsProcessor]:
logits_processors = []
if logit_bias:
try:
# Convert token_id to integer
# Clamp the bias between -100 and 100 per OpenAI API spec
clamped_logit_bias: Dict[int, float] = {
int(token_id): min(100.0, max(-100.0, bias))
for token_id, bias in logit_bias.items()
}
except ValueError as exc:
raise ValueError(
"Found token_id in logit_bias that is not "
"an integer or string representing an integer") from exc
# Check if token_id is within the vocab size
for token_id, bias in clamped_logit_bias.items():
if token_id < 0 or token_id >= tokenizer.vocab_size:
raise ValueError(f"token_id {token_id} in logit_bias contains "
"out-of-vocab token id")
logits_processors.append(
partial(logit_bias_logits_processor, clamped_logit_bias))
if allowed_token_ids is not None:
logits_processors.append(
_get_allowed_token_ids_logits_processor(
frozenset(allowed_token_ids), tokenizer.vocab_size))
return logits_processors