vllm/vllm/model_executor/models/minimax_text_01.py
Harry Mellor 97d1c99302
Rename clashing method names for vLLM model protocol (#27583)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-11-12 19:14:33 -08:00

1013 lines
37 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Inference-only MiniMaxText01 model."""
from collections.abc import Iterable
from itertools import islice
from typing import TYPE_CHECKING
if TYPE_CHECKING:
pass
import regex as re
import torch
from torch import nn
from transformers import MiniMaxConfig
from vllm.attention import Attention, AttentionMetadata
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, ModelConfig, VllmConfig
from vllm.distributed.parallel_state import (
get_pp_group,
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
)
from vllm.forward_context import get_forward_context
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
MergedColumnParallelLinear,
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.mamba.linear_attn import MiniMaxText01LinearAttention
from vllm.model_executor.layers.mamba.mamba_utils import (
MambaStateDtypeCalculator,
MambaStateShapeCalculator,
)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.utils import maybe_prefix
from vllm.sequence import IntermediateTensors
from .interfaces import HasInnerState, IsHybrid
from .utils import PPMissingLayer, is_pp_missing_parameter, make_layers
def replace_weight_name(
name: str, key: str = None, to: str = None, count: int = None, prefix: str = None
) -> str:
name = name.replace(key, to) if count is None else name.replace(key, to, count)
return name
def weight_loader_with_alias(alias: str):
def wrapper(func: callable):
def inner_func(
param: torch.Tensor,
loaded_weight: torch.Tensor,
*args,
prefix: str = None,
**kwargs,
):
value = func(param, loaded_weight, *args, **kwargs)
return value
return inner_func
return wrapper
class MiniMaxText01MLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
quant_config: QuantizationConfig | None = None,
layer_idx: int = None,
prefix: str = "mlp",
) -> None:
super().__init__()
self.layer_idx = layer_idx
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size,
[intermediate_size] * 2,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
self.down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.down_proj",
)
self.act_fn = SiluAndMul()
return
def forward(self, x: torch.Tensor) -> torch.Tensor:
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class MiniMaxText01MoE(nn.Module):
def __init__(
self,
num_experts: int,
top_k: int,
hidden_size: int,
intermediate_size: int,
params_dtype: torch.dtype | None = None,
layer_idx: int = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "moe",
) -> None:
super().__init__()
self.layer_idx = layer_idx
self.tp_size = get_tensor_model_parallel_world_size()
self.num_total_experts = num_experts
self.top_k = top_k
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size // self.tp_size
self.quant_config = quant_config
if params_dtype is None:
params_dtype = torch.get_default_dtype()
self.params_dtype = params_dtype
self.gate = ReplicatedLinear(
self.hidden_size,
self.num_total_experts,
bias=False,
params_dtype=torch.float32,
quant_config=None,
prefix=f"{prefix}.gate",
)
self.gate.weight.weight_loader = MiniMaxText01MoE.gate_weight_loader
self.experts = FusedMoE(
num_experts=self.num_total_experts,
top_k=self.top_k,
hidden_size=self.hidden_size,
intermediate_size=self.intermediate_size * self.tp_size,
params_dtype=self.params_dtype,
reduce_results=True,
renormalize=True,
quant_config=self.quant_config,
tp_size=self.tp_size,
prefix=f"{prefix}.experts",
)
return
@staticmethod
def gate_weight_loader(param: nn.Parameter, loaded_weight: torch.Tensor) -> None:
assert param.size() == loaded_weight.size()
param.data.copy_(loaded_weight.to(torch.float32))
return
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
num_tokens, hidden_size = hidden_states.shape
hidden_states = hidden_states.view(-1, self.hidden_size)
router_logits_fp32, _ = self.gate(hidden_states.to(torch.float32))
final_hidden_states = self.experts(
hidden_states, router_logits_fp32.to(hidden_states.dtype)
)
final_hidden = final_hidden_states.view(num_tokens, hidden_size)
return final_hidden
class MiniMaxText01Attention(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
head_dim: int,
num_kv_heads: int,
rotary_dim: int,
max_position: int = 4096 * 32,
rope_theta: float = 10000,
sliding_window: int | None = None,
quant_config: QuantizationConfig | None = None,
layer_idx: int = None,
cache_config: CacheConfig | None = None,
prefix: str = "mha",
) -> None:
super().__init__()
self.layer_idx = layer_idx
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
assert self.total_num_kv_heads % tp_size == 0
else:
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = head_dim
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.sliding_window = sliding_window
self.prefix = prefix
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
self.rotary_emb = get_rope(
head_size=self.head_dim,
rotary_dim=rotary_dim,
max_position=max_position,
base=int(rope_theta),
is_neox_style=True,
dtype=torch.float32,
)
return
def forward(
self,
hidden_states: torch.Tensor,
output: torch.Tensor,
positions: torch.Tensor,
**kwargs,
) -> None:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
output[:], _ = self.o_proj(attn_output)
class MiniMaxText01DecoderLayer(nn.Module):
def __init__(
self,
config: MiniMaxConfig,
model_config: ModelConfig | None = None,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
expert_num: int = 1,
layer_id: int = None,
linear_layer_id: int | None = None,
prefix: str = "decoder",
) -> None:
self._ilayer = layer_id
self._irank = get_tensor_model_parallel_rank()
self.prefix = prefix
super().__init__()
self.hidden_size = config.hidden_size
self.expert_num = expert_num
rope_theta = getattr(config, "rope_theta", 10000)
head_dim = getattr(config, "head_dim", None)
if head_dim is None:
head_dim = config.hidden_size // config.num_attention_heads
if hasattr(config, "max_model_len") and isinstance(config.max_model_len, int):
max_position_embeddings = min(
config.max_position_embeddings, config.max_model_len
)
if config.attention_type == 0:
use_headxdim = True
hidden_inner = (
head_dim * config.num_attention_heads
if use_headxdim
else config.hidden_size
)
self.self_attn = MiniMaxText01LinearAttention(
hidden_size=self.hidden_size,
hidden_inner_size=hidden_inner,
num_heads=config.num_attention_heads,
head_dim=head_dim,
max_position=max_position_embeddings,
block_size=config.block if hasattr(config, "block") else 256,
num_hidden_layer=config.num_hidden_layers,
model_config=model_config,
cache_config=cache_config,
quant_config=quant_config,
layer_idx=self._ilayer,
linear_layer_idx=linear_layer_id,
prefix=prefix,
)
elif config.attention_type == 1:
self.self_attn = MiniMaxText01Attention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
head_dim=head_dim,
rotary_dim=config.rotary_dim
if hasattr(config, "rotary_dim")
else head_dim,
num_kv_heads=config.num_key_value_heads,
max_position=max_position_embeddings,
rope_theta=rope_theta,
sliding_window=config.sliding_window,
quant_config=quant_config,
layer_idx=self._ilayer,
cache_config=cache_config,
prefix=prefix,
)
else:
raise ValueError(
f"Unsupported attention type: {self.config.attention_type}"
)
if expert_num == 1:
self.mlp = MiniMaxText01MLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
quant_config=quant_config,
layer_idx=self._ilayer,
prefix=prefix,
)
else:
self.block_sparse_moe = MiniMaxText01MoE(
num_experts=expert_num,
top_k=config.num_experts_per_tok,
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
layer_idx=self._ilayer,
quant_config=quant_config,
prefix=prefix,
)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
if config.attention_type == 0:
self.layernorm_attention_alpha = getattr(
config,
"layernorm_linear_attention_alpha",
getattr(config, "linear_attn_alpha_factor", 1),
)
self.layernorm_attention_beta = getattr(
config,
"layernorm_linear_attention_beta",
getattr(config, "linear_attn_beta_factor", 1),
)
else:
self.layernorm_attention_alpha = getattr(
config,
"layernorm_full_attention_alpha",
getattr(config, "full_attn_alpha_factor", 1),
)
self.layernorm_attention_beta = getattr(
config,
"layernorm_full_attention_beta",
getattr(config, "full_attn_beta_factor", 1),
)
self.layernorm_mlp_alpha = getattr(
config, "layernorm_mlp_alpha", getattr(config, "mlp_alpha_factor", 1)
)
self.layernorm_mlp_beta = getattr(
config, "layernorm_mlp_beta", getattr(config, "mlp_beta_factor", 1)
)
self.postnorm = getattr(config, "postnorm", False)
self.shared_moe = False
shared_intermediate = getattr(config, "shared_intermediate_size", 0)
if isinstance(shared_intermediate, list):
shared_intermediate = (
shared_intermediate[layer_id]
if layer_id < len(shared_intermediate)
else 0
)
if shared_intermediate > 0:
self.shared_moe = True
self.shared_mlp = MiniMaxText01MLP(
hidden_size=self.hidden_size,
intermediate_size=shared_intermediate,
quant_config=quant_config,
layer_idx=self._ilayer,
prefix=prefix,
)
self.coefficient = ReplicatedLinear(
self.hidden_size,
1,
bias=False,
quant_config=quant_config,
params_dtype=torch.float32,
)
self.coefficient.weight.weight_loader = self.shared_moe_coefficient_loader
self.shared_moe_mode = getattr(config, "shared_moe_mode", "softmax")
return
def forward(
self,
hidden_states: torch.Tensor,
positions: torch.Tensor,
attn_metadata: AttentionMetadata,
residual: torch.Tensor | None,
is_warmup: bool = False,
**kwargs,
) -> tuple[torch.Tensor, torch.Tensor]:
layernorm_input = hidden_states
layernorm_output = self.input_layernorm(layernorm_input)
residual = layernorm_output if self.postnorm else layernorm_input
self_attention_output = torch.empty_like(layernorm_output)
self.self_attn(
hidden_states=layernorm_output,
output=self_attention_output,
positions=positions,
)
residual = residual * self.layernorm_attention_alpha
self_attention_output = self_attention_output * self.layernorm_attention_beta
layernorm_input = residual + self_attention_output
layernorm_output = self.post_attention_layernorm(layernorm_input)
residual = layernorm_output if self.postnorm else layernorm_input
if self.expert_num == 1:
hidden_states = self.mlp(layernorm_output)
else:
moe_layernorm_output = layernorm_output.clone()
moe_hidden_states = self.block_sparse_moe(moe_layernorm_output)
if self.shared_moe:
before_moe_dtype = layernorm_output.dtype
moe_hidden_fp32 = moe_hidden_states.to(torch.float32)
output_mlp = self.shared_mlp(layernorm_output).to(torch.float32)
coef, _ = self.coefficient(layernorm_output.to(torch.float32))
if self.shared_moe_mode == "softmax":
coef = torch.nn.functional.softmax(coef, dim=-1)
hidden_states = moe_hidden_fp32 * (1 - coef) + output_mlp * coef
elif self.shared_moe_mode == "sigmoid":
coef = torch.nn.functional.sigmoid(coef)
hidden_states = moe_hidden_fp32 * (1 - coef) + output_mlp * coef
hidden_states = hidden_states.to(before_moe_dtype)
else:
hidden_states = moe_hidden_states
residual = residual * self.layernorm_mlp_alpha
hidden_states = hidden_states * self.layernorm_mlp_beta
hidden_states = residual + hidden_states
return hidden_states, None
@staticmethod
def shared_moe_coefficient_loader(
param: torch.Tensor, loaded_weight: torch.Tensor
) -> None:
assert param.size() == loaded_weight.size()
param.data.copy_(loaded_weight.to(torch.float32))
return
@support_torch_compile
class MiniMaxText01Model(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config: MiniMaxConfig = vllm_config.model_config.hf_config
model_config = vllm_config.model_config
quant_config = vllm_config.quant_config
cache_config = vllm_config.cache_config
scheduler_config = vllm_config.scheduler_config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.decoder_attention_types = getattr(
config, "attn_type_list", False
) or getattr(config, "decoder_attention_types", False)
# The HF format uses "layer_types" instead of "attn_type_list"
# where "linear_attention" is 0 and "full_attention" is 1
if not self.decoder_attention_types and hasattr(config, "layer_types"):
self.decoder_attention_types = []
for layer_type in config.layer_types:
if layer_type == "linear_attention":
self.decoder_attention_types.append(0)
elif layer_type == "full_attention":
self.decoder_attention_types.append(1)
else:
raise ValueError(f"Unsupported layer type: {layer_type}")
# Default to full attention
if not self.decoder_attention_types:
self.decoder_attention_types = [1] * config.num_hidden_layers
self.num_layers = config.num_hidden_layers
self._layer_barrier = False
if get_pp_group().is_first_rank:
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
org_num_embeddings=self.vocab_size,
)
else:
self.embed_tokens = PPMissingLayer()
def layer_fn(prefix):
layer_idx = int(prefix.split(".")[-1])
layer_config = config
layer_config.attention_type = self.decoder_attention_types[layer_idx]
layer_config.layer_idx = layer_idx
decoder_kwargs = {
"quant_config": quant_config,
"layer_id": layer_idx,
"model_config": model_config,
"cache_config": cache_config,
}
if layer_config.attention_type == 0:
decoder_kwargs["linear_layer_id"] = sum(
1 for i in range(layer_idx) if self.decoder_attention_types[i] == 0
)
else:
decoder_kwargs["linear_layer_id"] = None
if hasattr(config, "num_local_experts") and isinstance(
config.num_local_experts, list
):
decoder_kwargs["expert_num"] = config.num_local_experts[layer_idx]
elif hasattr(config, "num_local_experts") and isinstance(
config.num_local_experts, int
):
decoder_kwargs["expert_num"] = config.num_local_experts
else:
decoder_kwargs["expert_num"] = 1
return MiniMaxText01DecoderLayer(
layer_config, **decoder_kwargs, prefix=prefix
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers, layer_fn, prefix=f"{prefix}.layers"
)
linear_layer_nums = sum(
1
for i in range(config.num_hidden_layers)
if self.decoder_attention_types[i] == 0
)
max_slots_number = scheduler_config.max_num_seqs
self.cache_shape = (
linear_layer_nums,
max_slots_number,
config.num_attention_heads // get_tensor_model_parallel_world_size(),
config.head_dim,
config.head_dim,
)
_dummy = torch.zeros(1)
self._dtype = _dummy.dtype
del _dummy
norm_kwargs = {}
if hasattr(config, "rms_norm_eps"):
norm_kwargs["eps"] = config.rms_norm_eps
if get_pp_group().is_last_rank:
self.norm = RMSNorm(config.hidden_size, **norm_kwargs)
else:
self.norm = PPMissingLayer()
self.embed_scale = 1.0
return
def _clear_prefill_cache(
self, attn_metadata, minimax_cache_tensors: torch.Tensor, **kwargs
):
seq_to_slot_maps = {}
seq_id_map = sum(list(kwargs["request_ids_to_seq_ids"].values()), [])
for _, seq_to_slot_map in self.minimax_cache.cache_indices_mapping.items():
seq_to_slot_maps.update(seq_to_slot_map)
slots_to_clear = []
for _prefill_id in range(getattr(attn_metadata, "num_prefills", 0)):
if _prefill_id >= len(seq_id_map):
break
seq_id = seq_id_map[_prefill_id]
if (
attn_metadata.context_lens_tensor[_prefill_id] == 0
and seq_id in seq_to_slot_maps
):
slots_to_clear.append(seq_to_slot_maps[seq_id])
if slots_to_clear:
slots_tensor = torch.tensor(
slots_to_clear, device=minimax_cache_tensors.device, dtype=torch.long
)
minimax_cache_tensors[:, slots_tensor, ...] = 0
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor | None,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
**kwargs,
) -> torch.Tensor | IntermediateTensors:
forward_context = get_forward_context()
attn_metadata = forward_context.attn_metadata
if get_pp_group().is_first_rank:
if inputs_embeds is None:
hidden_states = self.embed_scale * self.embed_tokens(input_ids)
else:
hidden_states = inputs_embeds
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for layer in islice(self.layers, self.start_layer, self.end_layer):
hidden_states, residual = layer(
hidden_states=hidden_states,
positions=positions,
attn_metadata=attn_metadata,
residual=residual,
)
if not get_pp_group().is_last_rank:
return IntermediateTensors(
{"hidden_states": hidden_states, "residual": residual}
)
if residual is not None:
hidden_states, _ = self.norm(hidden_states, residual)
else:
hidden_states = self.norm(hidden_states)
return hidden_states
class MiniMaxText01ForCausalLM(nn.Module, HasInnerState, IsHybrid):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
super().__init__()
config = vllm_config.model_config.hf_config
self.config = config
if not hasattr(config, "sliding_window"):
config.sliding_window = None
self.CONCAT_FFN = True
if hasattr(vllm_config.model_config, "max_model_len"):
self.config.max_model_len = vllm_config.model_config.max_model_len
self.model = MiniMaxText01Model(
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
)
if get_pp_group().is_last_rank:
self.lm_head = ParallelLMHead(
config.vocab_size,
self.config.hidden_size,
prefix=maybe_prefix(prefix, "lm_head"),
)
self.logits_processor = LogitsProcessor(
config.vocab_size, self.config.vocab_size
)
else:
self.lm_head = PPMissingLayer()
self.lm_head.float()
flash_layer_count = sum(
1 for attn_type in self.model.decoder_attention_types if attn_type == 1
)
self.kv_cache = [torch.tensor([]) for _ in range(flash_layer_count)]
return
def copy_inputs_before_cuda_graphs(self, input_buffers, **kwargs):
return self.model.minimax_cache.copy_inputs_before_cuda_graphs(
input_buffers, **kwargs
)
def get_seqlen_agnostic_capture_inputs(self, batch_size: int):
return self.model.minimax_cache.get_seqlen_agnostic_capture_inputs(batch_size)
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.embed_input_ids(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
**kwargs,
) -> torch.Tensor:
hidden_states = self.model(
input_ids, positions, intermediate_tensors, inputs_embeds, **kwargs
)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor) -> torch.Tensor:
logits = self.logits_processor(self.lm_head, hidden_states.float())
return logits
def make_empty_intermediate_tensors(
self, batch_size: int, dtype: torch.dtype, device: torch.device
) -> IntermediateTensors:
return IntermediateTensors(
{
"hidden_states": torch.zeros(
(batch_size, self.config.hidden_size), dtype=dtype, device=device
),
"residual": torch.zeros(
(batch_size, self.config.hidden_size), dtype=dtype, device=device
),
}
)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
def which_layer(name: str) -> int:
if "layers" in name:
after_layer = name.split("layers")[-1]
return int(after_layer.split(".")[1])
return None
def is_linear_attn_layer(layer_idx: int) -> bool:
if layer_idx is None or layer_idx >= len(
self.model.decoder_attention_types
):
return False
return self.model.decoder_attention_types[layer_idx] == 0
def is_moe_weight(name: str) -> bool:
return "block_sparse_moe" in name and not name.endswith(".bias")
def get_expert_id(param_name):
pattern = r"model\.layers\.\d+\.block_sparse_moe\.experts\.(\d+)\."
match = re.search(pattern, param_name)
if match:
return match.group(1)
return None
def load_sparse_moe_weight(
name: str, loaded_weight: torch.Tensor, self
) -> None:
if isinstance(self.config.num_local_experts, list):
expert_params_mapping = [
(
"w13_weight" if weight_name in ["w1", "w3"] else "w2_weight",
f"experts.{expert_id}.{weight_name}.weight",
expert_id,
)
for expert_id in range(max(self.config.num_local_experts))
for weight_name in ["w1", "w2", "w3"]
]
else:
expert_params_mapping = [
(
"w13_scale" if weight_name in ["w1", "w3"] else "w2_scale",
f"{expert_id}.{weight_name}.weight_scale",
expert_id,
weight_name,
)
for expert_id in range(self.config.num_local_experts)
for weight_name in ["w1", "w2", "w3"]
] + [
(
"w13_weight" if weight_name in ["w1", "w3"] else "w2_weight",
f"{expert_id}.{weight_name}.weight",
expert_id,
weight_name,
)
for expert_id in range(self.config.num_local_experts)
for weight_name in ["w1", "w2", "w3"]
]
for param_name, weight_name, expert_id, shard_id in expert_params_mapping:
name_expert_id = get_expert_id(name)
if name_expert_id is not None and int(name_expert_id) != int(expert_id):
continue
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
if is_pp_missing_parameter(name, self):
return
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader = weight_loader_with_alias(name)(weight_loader)
weight_loader(
param,
loaded_weight,
weight_name,
expert_id=expert_id,
shard_id=shard_id,
)
loaded_params.add(name)
break
else:
if is_pp_missing_parameter(name, self):
return
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader = weight_loader_with_alias(name)(weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return
def is_shared_mlp_weight(name: str) -> bool:
return "shared_mlp" in name and not name.endswith(".bias")
def load_shared_mlp_weight(
name: str, loaded_weight: torch.Tensor, self
) -> None:
if not self.CONCAT_FFN:
if "gate_proj" in name:
name = name.replace("gate_proj", "w1", 1)
elif "up_proj" in name:
name = name.replace("up_proj", "w3", 1)
elif "down_proj" in name:
name = name.replace("down_proj", "w2", 1)
else:
if "gate_proj" in name:
name = name.replace("gate_proj", "gate_up_proj", 1)
loaded_shard_id = 0
elif "up_proj" in name:
name = name.replace("up_proj", "gate_up_proj", 1)
loaded_shard_id = 1
if is_pp_missing_parameter(name, self):
return
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader = weight_loader_with_alias(name)(weight_loader)
if not self.CONCAT_FFN:
weight_loader(param, loaded_weight)
else:
if "gate_up_proj" in name:
weight_loader(param, loaded_weight, loaded_shard_id)
elif "down_proj" in name:
weight_loader(param, loaded_weight)
else:
raise AssertionError("MLP weight not in [gate_up_proj, down_proj]")
loaded_params.add(name)
return
def is_mha_weight(name: str) -> bool:
return "self_attn" in name and not name.endswith(".bias")
def load_linear_attn_weight(
name: str, loaded_weight: torch.Tensor, self
) -> None:
if is_pp_missing_parameter(name, self):
return
param = params_dict[name]
weight_loader = getattr(
param, "weight_loader", MiniMaxText01LinearAttention.weight_direct_load
)
weight_loader = weight_loader_with_alias(name)(weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return
def load_flash_attn_weight(
name: str, loaded_weight: torch.Tensor, self
) -> None:
flash_mha_params_mapping = [
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
for param_name, weight_name, shard_id in flash_mha_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
if is_pp_missing_parameter(name, self):
return
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader = weight_loader_with_alias(name)(weight_loader)
weight_loader(param, loaded_weight, shard_id)
loaded_params.add(name)
break
else:
if is_pp_missing_parameter(name, self):
return
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader = weight_loader_with_alias(name)(weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return
def is_layer_norm_weight(name: str) -> bool:
return "norm" in name and not name.endswith(".bias") and name in params_dict
def load_layer_norm_weight(
name: str, loaded_weight: torch.Tensor, self
) -> None:
if is_pp_missing_parameter(name, self):
return
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader = weight_loader_with_alias(name)(weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return
def load_basic_weight(name: str, loaded_weight: torch.Tensor, self) -> None:
if is_pp_missing_parameter(name, self):
return
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader = weight_loader_with_alias(name)(weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return
for name, loaded_weight in weights:
weight_at_layer = which_layer(name)
if weight_at_layer and weight_at_layer >= len(
self.model.decoder_attention_types
):
continue
if is_layer_norm_weight(name):
load_layer_norm_weight(name, loaded_weight, self)
continue
if is_mha_weight(name):
if is_linear_attn_layer(weight_at_layer):
load_linear_attn_weight(name, loaded_weight, self)
else:
load_flash_attn_weight(name, loaded_weight, self)
continue
if is_moe_weight(name):
load_sparse_moe_weight(name, loaded_weight, self)
continue
if is_shared_mlp_weight(name):
load_shared_mlp_weight(name, loaded_weight, self)
continue
if "rotary_emb.inv_freq" in name:
continue
load_basic_weight(name, loaded_weight, self)
return loaded_params
@classmethod
def get_mamba_state_dtype_from_config(
cls,
vllm_config: "VllmConfig",
) -> tuple[torch.dtype, torch.dtype]:
return MambaStateDtypeCalculator.linear_attention_state_dtype(
vllm_config.model_config.dtype,
vllm_config.cache_config.mamba_cache_dtype,
)
@classmethod
def get_mamba_state_shape_from_config(
cls,
vllm_config: "VllmConfig",
) -> tuple[tuple[int, ...], ...]:
"""Calculate shape for MiniMaxText01LinearAttention cache.
Args:
vllm_config: vLLM config
Returns:
Tuple containing:
- state_shape: Shape of the cache
"""
parallel_config = vllm_config.parallel_config
hf_config = vllm_config.model_config.hf_config
return MambaStateShapeCalculator.linear_attention_state_shape(
num_heads=hf_config.num_attention_heads,
tp_size=parallel_config.tensor_parallel_size,
head_dim=hf_config.head_dim,
)