vllm/vllm/config.py
Chauncey 98060b001d
[Feature][Frontend]: Deprecate --enable-reasoning (#17452)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-05-01 06:46:16 -07:00

4381 lines
188 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import ast
import copy
import enum
import hashlib
import inspect
import json
import re
import sys
import textwrap
import warnings
from collections import Counter
from contextlib import contextmanager
from dataclasses import (MISSING, dataclass, field, fields, is_dataclass,
replace)
from functools import cached_property
from importlib.util import find_spec
from pathlib import Path
from typing import (TYPE_CHECKING, Any, Callable, ClassVar, Literal, Optional,
Protocol, TypeVar, Union, cast, get_args, get_origin)
import torch
from pydantic import BaseModel, Field, PrivateAttr
from torch.distributed import ProcessGroup, ReduceOp
from transformers import PretrainedConfig
from typing_extensions import deprecated
import vllm.envs as envs
from vllm import version
from vllm.compilation.inductor_pass import CallableInductorPass, InductorPass
from vllm.logger import init_logger
from vllm.model_executor.layers.quantization import (QUANTIZATION_METHODS,
QuantizationMethods,
get_quantization_config)
from vllm.model_executor.models import ModelRegistry
from vllm.platforms import CpuArchEnum, current_platform
from vllm.tracing import is_otel_available, otel_import_error_traceback
from vllm.transformers_utils.config import (
ConfigFormat, get_config, get_hf_image_processor_config,
get_hf_text_config, get_pooling_config,
get_sentence_transformer_tokenizer_config, is_encoder_decoder,
try_get_generation_config, uses_mrope)
from vllm.transformers_utils.s3_utils import S3Model
from vllm.transformers_utils.utils import is_s3, maybe_model_redirect
from vllm.utils import (GiB_bytes, LayerBlockType, cuda_device_count_stateless,
get_cpu_memory, get_open_port, is_torch_equal_or_newer,
random_uuid, resolve_obj_by_qualname)
if TYPE_CHECKING:
from _typeshed import DataclassInstance
from ray.util.placement_group import PlacementGroup
from vllm.executor.executor_base import ExecutorBase
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.model_loader.loader import BaseModelLoader
ConfigType = type[DataclassInstance]
else:
QuantizationConfig = None
ConfigType = type
logger = init_logger(__name__)
ConfigT = TypeVar("ConfigT", bound=ConfigType)
# This value is chosen to have a balance between ITL and TTFT. Note it is
# not optimized for throughput.
_DEFAULT_MAX_NUM_BATCHED_TOKENS = 2048
_POOLING_MODEL_MAX_NUM_BATCHED_TOKENS = 32768
_MULTIMODAL_MODEL_MAX_NUM_BATCHED_TOKENS = 5120
TaskOption = Literal["auto", "generate", "embedding", "embed", "classify",
"score", "reward", "transcription"]
_ResolvedTask = Literal["generate", "embed", "classify", "score", "reward",
"draft", "transcription"]
RunnerType = Literal["generate", "pooling", "draft", "transcription"]
_RUNNER_TASKS: dict[RunnerType, list[_ResolvedTask]] = {
"generate": ["generate"],
"pooling": ["embed", "classify", "score", "reward"],
"draft": ["draft"],
"transcription": ["transcription"],
}
_TASK_RUNNER: dict[_ResolvedTask, RunnerType] = {
task: runner
for runner, tasks in _RUNNER_TASKS.items()
for task in tasks
}
HfOverrides = Union[dict[str, Any], Callable[[PretrainedConfig],
PretrainedConfig]]
class SupportsHash(Protocol):
def compute_hash(self) -> str:
...
class SupportsMetricsInfo(Protocol):
def metrics_info(self) -> dict[str, str]:
...
class ModelImpl(str, enum.Enum):
AUTO = "auto"
VLLM = "vllm"
TRANSFORMERS = "transformers"
def get_attr_docs(cls: type[Any]) -> dict[str, str]:
"""
Get any docstrings placed after attribute assignments in a class body.
https://davidism.com/mit-license/
"""
def pairwise(iterable):
"""
Manually implement https://docs.python.org/3/library/itertools.html#itertools.pairwise
Can be removed when Python 3.9 support is dropped.
"""
iterator = iter(iterable)
a = next(iterator, None)
for b in iterator:
yield a, b
a = b
cls_node = ast.parse(textwrap.dedent(inspect.getsource(cls))).body[0]
if not isinstance(cls_node, ast.ClassDef):
raise TypeError("Given object was not a class.")
out = {}
# Consider each pair of nodes.
for a, b in pairwise(cls_node.body):
# Must be an assignment then a constant string.
if (not isinstance(a, (ast.Assign, ast.AnnAssign))
or not isinstance(b, ast.Expr)
or not isinstance(b.value, ast.Constant)
or not isinstance(b.value.value, str)):
continue
doc = inspect.cleandoc(b.value.value)
# An assignment can have multiple targets (a = b = v), but an
# annotated assignment only has one target.
targets = a.targets if isinstance(a, ast.Assign) else [a.target]
for target in targets:
# Must be assigning to a plain name.
if not isinstance(target, ast.Name):
continue
out[target.id] = doc
return out
def config(cls: ConfigT) -> ConfigT:
"""
A decorator that ensures all fields in a dataclass have default values
and that each field has a docstring.
"""
if not is_dataclass(cls):
raise TypeError("The decorated class must be a dataclass.")
attr_docs = get_attr_docs(cls)
for f in fields(cls):
if f.init and f.default is MISSING and f.default_factory is MISSING:
raise ValueError(
f"Field '{f.name}' in {cls.__name__} must have a default value."
)
if f.name not in attr_docs:
raise ValueError(
f"Field '{f.name}' in {cls.__name__} must have a docstring.")
if get_origin(f.type) is Union:
args = get_args(f.type)
literal_args = [arg for arg in args if get_origin(arg) is Literal]
if len(literal_args) > 1:
raise ValueError(
f"Field '{f.name}' in {cls.__name__} must use a single "
"Literal type. Please use 'Literal[Literal1, Literal2]' "
"instead of 'Union[Literal1, Literal2]'.")
return cls
def get_field(cls: ConfigType, name: str) -> Field:
"""Get the default factory field of a dataclass by name. Used for getting
default factory fields in `EngineArgs`."""
if not is_dataclass(cls):
raise TypeError("The given class is not a dataclass.")
cls_fields = {f.name: f for f in fields(cls)}
if name not in cls_fields:
raise ValueError(f"Field '{name}' not found in {cls.__name__}.")
named_field: Field = cls_fields.get(name)
if (default_factory := named_field.default_factory) is not MISSING:
return field(default_factory=default_factory)
if (default := named_field.default) is not MISSING:
return field(default=default)
raise ValueError(
f"{cls.__name__}.{name} must have a default value or default factory.")
TokenizerMode = Literal["auto", "slow", "mistral", "custom"]
ModelDType = Literal["auto", "half", "float16", "bfloat16", "float", "float32"]
@config
@dataclass
class ModelConfig:
"""Configuration for the model."""
model: str = "facebook/opt-125m"
"""Name or path of the Hugging Face model to use. It is also used as the
content for `model_name` tag in metrics output when `served_model_name` is
not specified."""
task: Literal[TaskOption, Literal["draft"]] = "auto"
"""The task to use the model for. Each vLLM instance only supports one
task, even if the same model can be used for multiple tasks. When the model
only supports one task, "auto" can be used to select it; otherwise, you
must specify explicitly which task to use."""
tokenizer: str = None # type: ignore
"""Name or path of the Hugging Face tokenizer to use. If unspecified, model
name or path will be used."""
tokenizer_mode: TokenizerMode = "auto"
"""Tokenizer mode:\n
- "auto" will use the fast tokenizer if available.\n
- "slow" will always use the slow tokenizer.\n
- "mistral" will always use the tokenizer from `mistral_common`.\n
- "custom" will use --tokenizer to select the preregistered tokenizer."""
trust_remote_code: bool = False
"""Trust remote code (e.g., from HuggingFace) when downloading the model
and tokenizer."""
dtype: Union[ModelDType, torch.dtype] = "auto"
"""Data type for model weights and activations:\n
- "auto" will use FP16 precision for FP32 and FP16 models, and BF16
precision for BF16 models.\n
- "half" for FP16. Recommended for AWQ quantization.\n
- "float16" is the same as "half".\n
- "bfloat16" for a balance between precision and range.\n
- "float" is shorthand for FP32 precision.\n
- "float32" for FP32 precision."""
seed: Optional[int] = None
"""Random seed for reproducibility."""
hf_config_path: Optional[str] = None
"""Name or path of the Hugging Face config to use. If unspecified, model
name or path will be used."""
allowed_local_media_path: str = ""
"""Allowing API requests to read local images or videos from directories
specified by the server file system. This is a security risk. Should only
be enabled in trusted environments."""
revision: Optional[str] = None
"""The specific model version to use. It can be a branch name, a tag name,
or a commit id. If unspecified, will use the default version."""
code_revision: Optional[str] = None
"""The specific revision to use for the model code on the Hugging Face Hub.
It can be a branch name, a tag name, or a commit id. If unspecified, will
use the default version."""
rope_scaling: dict[str, Any] = field(default_factory=dict)
"""RoPE scaling configuration in JSON format. For example,
`{"rope_type":"dynamic","factor":2.0}`."""
rope_theta: Optional[float] = None
"""RoPE theta. Use with `rope_scaling`. In some cases, changing the RoPE
theta improves the performance of the scaled model."""
tokenizer_revision: Optional[str] = None
"""The specific revision to use for the tokenizer on the Hugging Face Hub.
It can be a branch name, a tag name, or a commit id. If unspecified, will
use the default version."""
max_model_len: int = None # type: ignore
"""Model context length (prompt and output). If unspecified, will be
automatically derived from the model config.
When passing via `--max-model-len`, supports k/m/g/K/M/G in human-readable
format. Examples:\n
- 1k -> 1000\n
- 1K -> 1024\n
- 25.6k -> 25,600"""
spec_target_max_model_len: Optional[int] = None
"""Specify the the maximum length for spec decoding draft models."""
quantization: Optional[QuantizationMethods] = None
"""Method used to quantize the weights. If `None`, we first check the
`quantization_config` attribute in the model config file. If that is
`None`, we assume the model weights are not quantized and use `dtype` to
determine the data type of the weights."""
enforce_eager: bool = False
"""Whether to always use eager-mode PyTorch. If True, we will disable CUDA
graph and always execute the model in eager mode. If False, we will use
CUDA graph and eager execution in hybrid for maximal performance and
flexibility."""
max_seq_len_to_capture: int = 8192
"""Maximum sequence len covered by CUDA graphs. When a sequence has context
length larger than this, we fall back to eager mode. Additionally for
encoder-decoder models, if the sequence length of the encoder input is
larger than this, we fall back to the eager mode."""
max_logprobs: int = 20
"""Maximum number of log probabilities to return when `logprobs` is
specified in `SamplingParams`. The default value comes the default for the
OpenAI Chat Completions API."""
disable_sliding_window: bool = False
"""Whether to disable sliding window. If True, we will disable the sliding
window functionality of the model, capping to sliding window size. If the
model does not support sliding window, this argument is ignored."""
disable_cascade_attn: bool = False
"""Disable cascade attention for V1. While cascade attention does not
change the mathematical correctness, disabling it could be useful for
preventing potential numerical issues. Note that even if this is set to
False, cascade attention will be only used when the heuristic tells that
it's beneficial."""
skip_tokenizer_init: bool = False
"""Skip initialization of tokenizer and detokenizer. Expects valid
`prompt_token_ids` and `None` for prompt from the input. The generated
output will contain token ids."""
served_model_name: Optional[Union[str, list[str]]] = None
"""The model name(s) used in the API. If multiple names are provided, the
server will respond to any of the provided names. The model name in the
model field of a response will be the first name in this list. If not
specified, the model name will be the same as the `--model` argument. Noted
that this name(s) will also be used in `model_name` tag content of
prometheus metrics, if multiple names provided, metrics tag will take the
first one."""
limit_mm_per_prompt: dict[str, int] = field(default_factory=dict)
"""Maximum number of data items per modality per prompt. Only applicable
for multimodal models."""
use_async_output_proc: bool = True
"""Whether to use async output processor."""
config_format: Union[str, ConfigFormat] = ConfigFormat.AUTO.value
"""The format of the model config to load:\n
- "auto" will try to load the config in hf format if available else it
will try to load in mistral format.\n
- "hf" will load the config in hf format.\n
- "mistral" will load the config in mistral format."""
hf_token: Optional[Union[bool, str]] = None
"""The token to use as HTTP bearer authorization for remote files . If
`True`, will use the token generated when running `huggingface-cli login`
(stored in `~/.huggingface`)."""
hf_overrides: HfOverrides = field(default_factory=dict)
"""If a dictionary, contains arguments to be forwarded to the Hugging Face
config. If a callable, it is called to update the HuggingFace config. When
specified via CLI, the argument must be a valid JSON string."""
mm_processor_kwargs: Optional[dict[str, Any]] = None
"""Arguments to be forwarded to the model's processor for multi-modal data,
e.g., image processor. Overrides for the multi-modal processor obtained
from `AutoProcessor.from_pretrained`. The available overrides depend on the
model that is being run. For example, for Phi-3-Vision: `{"num_crops": 4}`.
When specified via CLI, the argument must be a valid JSON string."""
disable_mm_preprocessor_cache: bool = False
"""If `True`, disable caching of the multi-modal preprocessor/mapper (not
recommended)."""
override_neuron_config: dict[str, Any] = field(default_factory=dict)
"""Initialize non-default neuron config or override default neuron config
that are specific to Neuron devices, this argument will be used to
configure the neuron config that can not be gathered from the vllm
arguments. e.g. `{"cast_logits_dtype": "bloat16"}`. When specified via CLI,
the argument must be a valid JSON string."""
pooler_config: Optional["PoolerConfig"] = field(init=False)
"""Pooler config which controls the behaviour of output pooling in pooling
models."""
override_pooler_config: Optional[Union[dict, "PoolerConfig"]] = None
"""Initialize non-default pooling config or override default pooling config
for the pooling model. e.g. `{"pooling_type": "mean", "normalize": false}`.
When specified via CLI, the argument must be a valid JSON string."""
logits_processor_pattern: Optional[str] = None
"""Optional regex pattern specifying valid logits processor qualified names
that can be passed with the `logits_processors` extra completion argument.
Defaults to `None`, which allows no processors."""
generation_config: str = "auto"
"""The folder path to the generation config. Defaults to `"auto"`, the
generation config will be loaded from model path. If set to `"vllm"`, no
generation config is loaded, vLLM defaults will be used. If set to a folder
path, the generation config will be loaded from the specified folder path.
If `max_new_tokens` is specified in generation config, then it sets a
server-wide limit on the number of output tokens for all requests."""
override_generation_config: dict[str, Any] = field(default_factory=dict)
"""Overrides or sets generation config. e.g. `{"temperature": 0.5}`. If
used with `--generation-config auto`, the override parameters will be
merged with the default config from the model. If used with
`--generation-config vllm`, only the override parameters are used.
When specified via CLI, the argument must be a valid JSON string."""
enable_sleep_mode: bool = False
"""Enable sleep mode for the engine (only cuda platform is supported)."""
model_impl: Union[str, ModelImpl] = ModelImpl.AUTO.value
"""Which implementation of the model to use:\n
- "auto" will try to use the vLLM implementation, if it exists, and fall
back to the Transformers implementation if no vLLM implementation is
available.\n
- "vllm" will use the vLLM model implementation.\n
- "transformers" will use the Transformers model implementation."""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
factors: list[Any] = []
factors.append(self.model)
factors.append(self.dtype)
factors.append(self.quantization)
factors.append(self.revision)
factors.append(self.code_revision)
factors.append(self.max_model_len)
factors.append(self.max_logprobs)
factors.append(self.disable_sliding_window)
factors.append(self.trust_remote_code)
factors.append(self.generation_config)
factors.append(self.model_impl)
factors.append(self.override_generation_config)
factors.append(self.rope_scaling)
factors.append(self.rope_theta)
# hf_config can control how the model looks!
factors.append(self.hf_config.to_json_string())
str_factors = str(factors)
assert_hashable(str_factors)
return hashlib.sha256(str(factors).encode()).hexdigest()
def __post_init__(self) -> None:
self.model = maybe_model_redirect(self.model)
# The tokenizer is consistent with the model by default.
if self.tokenizer is None:
self.tokenizer = self.model
if self.tokenizer_revision is None:
self.tokenizer_revision = self.revision
self.tokenizer = maybe_model_redirect(self.tokenizer)
if isinstance(self.hf_config_path, str):
self.hf_config_path = maybe_model_redirect(self.hf_config_path)
if callable(self.hf_overrides):
hf_overrides_kw = {}
hf_overrides_fn = self.hf_overrides
else:
hf_overrides_kw = self.hf_overrides
hf_overrides_fn = None
if self.rope_scaling:
hf_override: dict[str, Any] = {"rope_scaling": self.rope_scaling}
hf_overrides_kw.update(hf_override)
hf_overrides_str = json.dumps(hf_overrides_kw)
msg = (
"`--rope-scaling` will be removed in a future release. "
f"'Please instead use `--hf-overrides '{hf_overrides_str}'`")
warnings.warn(DeprecationWarning(msg), stacklevel=2)
if self.rope_theta is not None:
hf_override = {"rope_theta": self.rope_theta}
hf_overrides_kw.update(hf_override)
hf_overrides_str = json.dumps(hf_overrides_kw)
msg = (
"`--rope-theta` will be removed in a future release. "
f"'Please instead use `--hf-overrides '{hf_overrides_str}'`")
warnings.warn(DeprecationWarning(msg), stacklevel=2)
self.maybe_pull_model_tokenizer_for_s3(self.model, self.tokenizer)
if (backend := envs.VLLM_ATTENTION_BACKEND
) and backend == "FLASHINFER" and find_spec("flashinfer") is None:
raise ValueError(
"VLLM_ATTENTION_BACKEND is set to FLASHINFER, but flashinfer "
"module was not found. See "
"https://github.com/vllm-project/vllm/blob/main/docker/Dockerfile " # noqa: E501
"for instructions on how to install it.")
from vllm.platforms import current_platform
if (self.enable_sleep_mode
and not current_platform.is_sleep_mode_available()):
raise ValueError(
"Sleep mode is not supported on current platform.")
if isinstance(self.config_format, str):
self.config_format = ConfigFormat(self.config_format)
hf_config = get_config(self.hf_config_path or self.model,
self.trust_remote_code, self.revision,
self.code_revision, self.config_format)
if hf_overrides_kw:
logger.info("Overriding HF config with %s", hf_overrides_kw)
hf_config.update(hf_overrides_kw)
if hf_overrides_fn:
logger.info("Overriding HF config with %s", hf_overrides_fn)
hf_config = hf_overrides_fn(hf_config)
self.hf_config = hf_config
self.hf_text_config = get_hf_text_config(self.hf_config)
self.attention_chunk_size = getattr(self.hf_text_config,
"attention_chunk_size", None)
self.encoder_config = self._get_encoder_config()
self.hf_image_processor_config = get_hf_image_processor_config(
self.model, hf_token=self.hf_token, revision=self.revision)
self.dtype = _get_and_verify_dtype(self.hf_config, self.dtype)
interleaved_attn_models = ["gemma2", "gemma3_text", "cohere2"]
sliding_window = getattr(self.hf_text_config, "sliding_window", None)
has_interleaved_attention = (sliding_window is not None) and (
isinstance(sliding_window, list) or
(self.hf_text_config.model_type in interleaved_attn_models))
if (not self.disable_sliding_window and has_interleaved_attention):
if (backend :=
envs.VLLM_ATTENTION_BACKEND) in ("XFORMERS", "FLASHINFER"):
sliding_window_len_min = get_min_sliding_window(
self.hf_text_config.sliding_window)
logger.warning_once(
"%s has interleaved attention, which is currently not supported by the %s backend. Disabling sliding window and capping the max length to the sliding window size (%d).", # noqa: E501
self.hf_text_config.model_type,
backend,
sliding_window_len_min,
)
self.disable_sliding_window = True
else:
# for a model with interleaved attention,
# the scheduler and the model treat it as full attention
# (i.e., not dropping any tokens outside the window).
# only the attention layer itself is aware of the sliding
# window, and use the window size to compute the attention.
self.hf_text_config.interleaved_sliding_window = sliding_window
delattr(self.hf_text_config, "sliding_window")
sliding_window = None
self.max_model_len = _get_and_verify_max_len(
hf_config=self.hf_text_config,
max_model_len=self.max_model_len,
disable_sliding_window=self.disable_sliding_window,
sliding_window_len=self.get_hf_config_sliding_window(),
spec_target_max_model_len=self.spec_target_max_model_len,
encoder_config=self.encoder_config)
self.served_model_name = get_served_model_name(self.model,
self.served_model_name)
self.multimodal_config = self._init_multimodal_config()
if not self.skip_tokenizer_init:
self._verify_tokenizer_mode()
self.is_attention_free = self._init_attention_free()
self.is_hybrid = self._init_is_hybrid()
self.has_noops = self._init_has_noops()
self.has_inner_state = self._init_has_inner_state()
if (not current_platform.is_neuron() and self.override_neuron_config):
raise ValueError(
"`override_neuron_config` is only supported on Neuron.")
supported_tasks, task = self._resolve_task(self.task)
self.supported_tasks = supported_tasks
self.task = task
if self.task in ("draft", "generate"):
self.truncation_side = "left"
else:
self.truncation_side = "right"
self.pooler_config = self._init_pooler_config()
self._verify_quantization()
self._verify_cuda_graph()
self._verify_bnb_config()
@property
def registry(self):
return ModelRegistry
@property
def architectures(self) -> list[str]:
return getattr(self.hf_config, "architectures", [])
def maybe_pull_model_tokenizer_for_s3(self, model: str,
tokenizer: str) -> None:
"""
Pull the model config or tokenizer to a temporary
directory in case of S3.
Args:
model: The model name or path.
tokenizer: The tokenizer name or path.
"""
if is_s3(model) or is_s3(tokenizer):
if is_s3(model):
s3_model = S3Model()
s3_model.pull_files(
model, allow_pattern=["*.model", "*.py", "*.json"])
self.model_weights = self.model
self.model = s3_model.dir
if is_s3(tokenizer):
s3_tokenizer = S3Model()
s3_tokenizer.pull_files(
model, ignore_pattern=["*.pt", "*.safetensors", "*.bin"])
self.tokenizer = s3_tokenizer.dir
def _init_multimodal_config(self) -> Optional["MultiModalConfig"]:
if self.registry.is_multimodal_model(self.architectures):
return MultiModalConfig(
limit_per_prompt=self.limit_mm_per_prompt,
mm_processor_kwargs=self.mm_processor_kwargs,
disable_mm_preprocessor_cache=self.
disable_mm_preprocessor_cache)
if self.limit_mm_per_prompt:
raise ValueError("`limit_mm_per_prompt` is only supported for "
"multimodal models.")
if self.mm_processor_kwargs:
raise ValueError("`mm_processor_kwargs` is only supported for "
"multimodal models.")
if self.disable_mm_preprocessor_cache:
raise ValueError("`disable_mm_preprocessor_cache` is only "
"supported for multimodal models.")
return None
def _get_encoder_config(self):
return get_sentence_transformer_tokenizer_config(
self.model, self.revision)
def _init_pooler_config(self) -> Optional["PoolerConfig"]:
if self.runner_type == "pooling":
if isinstance(self.override_pooler_config, dict):
self.override_pooler_config = PoolerConfig(
**self.override_pooler_config)
pooler_config = self.override_pooler_config or PoolerConfig()
base_config = get_pooling_config(self.model, self.revision)
if base_config is not None:
# Only set values that are not overridden by the user
for k, v in base_config.items():
if getattr(pooler_config, k) is None:
setattr(pooler_config, k, v)
if self.is_matryoshka:
if pooler_config.normalize is None:
pooler_config.normalize = True
elif not pooler_config.normalize:
raise ValueError(
"`normalize` must be enabled (set to True) "
"for models that are compatible with "
"Matryoshka Representation.")
return pooler_config
return None
def _init_attention_free(self) -> bool:
return self.registry.is_attention_free_model(self.architectures)
def _init_is_hybrid(self) -> bool:
return self.registry.is_hybrid_model(self.architectures)
def _init_has_noops(self) -> bool:
architectures = getattr(self.hf_config, "architectures", [])
return self.registry.is_noops_model(architectures)
def _init_has_inner_state(self) -> bool:
return self.registry.model_has_inner_state(self.architectures)
def _verify_tokenizer_mode(self) -> None:
tokenizer_mode = cast(TokenizerMode, self.tokenizer_mode.lower())
if tokenizer_mode not in get_args(TokenizerMode):
raise ValueError(
f"Unknown tokenizer mode: {self.tokenizer_mode}. Must be "
f"one of {get_args(TokenizerMode)}.")
self.tokenizer_mode = tokenizer_mode
def _get_preferred_task(
self,
architectures: list[str],
supported_tasks: set[_ResolvedTask],
) -> Optional[_ResolvedTask]:
model_id = self.model
if get_pooling_config(model_id, self.revision):
return "embed"
if self.registry.is_cross_encoder_model(architectures):
return "score"
if self.registry.is_transcription_model(architectures):
return "transcription"
suffix_to_preferred_task: list[tuple[str, _ResolvedTask]] = [
# Other models follow this pattern
("ForCausalLM", "generate"),
("ForConditionalGeneration", "generate"),
("ForSequenceClassification", "classify"),
("ChatModel", "generate"),
("LMHeadModel", "generate"),
("EmbeddingModel", "embed"),
("RewardModel", "reward"),
]
_, arch = self.registry.inspect_model_cls(architectures)
for suffix, pref_task in suffix_to_preferred_task:
if arch.endswith(suffix) and pref_task in supported_tasks:
return pref_task
return None
def _resolve_task(
self,
task_option: Literal[TaskOption, Literal["draft"]],
) -> tuple[set[_ResolvedTask], _ResolvedTask]:
if task_option == "draft":
return {"draft"}, "draft"
registry = self.registry
architectures = self.architectures
runner_support: dict[RunnerType, bool] = {
# NOTE: Listed from highest to lowest priority,
# in case the model supports multiple of them
"transcription": registry.is_transcription_model(architectures),
"generate": registry.is_text_generation_model(architectures),
"pooling": registry.is_pooling_model(architectures),
}
supported_runner_types_lst: list[RunnerType] = [
runner_type
for runner_type, is_supported in runner_support.items()
if is_supported
]
supported_tasks_lst: list[_ResolvedTask] = [
task for runner_type in supported_runner_types_lst
for task in _RUNNER_TASKS[runner_type]
]
supported_tasks = set(supported_tasks_lst)
if task_option == "auto":
selected_task = next(iter(supported_tasks_lst))
if len(supported_tasks_lst) > 1:
preferred_task = self._get_preferred_task(
architectures, supported_tasks)
if preferred_task is not None:
selected_task = preferred_task
logger.info(
"This model supports multiple tasks: %s. "
"Defaulting to '%s'.", supported_tasks, selected_task)
else:
# Aliases
if task_option == "embedding":
preferred_task = self._get_preferred_task(
architectures, supported_tasks)
if preferred_task != "embed":
msg = ("The 'embedding' task will be restricted to "
"embedding models in a future release. Please "
"pass `--task classify`, `--task score`, or "
"`--task reward` explicitly for other pooling "
"models.")
warnings.warn(msg, DeprecationWarning, stacklevel=2)
task_option = preferred_task or "embed"
if task_option not in supported_tasks:
msg = (
f"This model does not support the '{task_option}' task. "
f"Supported tasks: {supported_tasks}")
raise ValueError(msg)
selected_task = task_option
return supported_tasks, selected_task
def _parse_quant_hf_config(self):
quant_cfg = getattr(self.hf_config, "quantization_config", None)
if quant_cfg is None:
# compressed-tensors uses a "compression_config" key
quant_cfg = getattr(self.hf_config, "compression_config", None)
return quant_cfg
def _verify_quantization(self) -> None:
supported_quantization = QUANTIZATION_METHODS
optimized_quantization_methods = [
"fp8", "marlin", "modelopt", "gptq_marlin_24", "gptq_marlin",
"awq_marlin", "fbgemm_fp8", "compressed-tensors", "experts_int8",
"quark", "nvfp4", "bitblas", "gptq_bitblas"
]
if self.quantization is not None:
self.quantization = cast(QuantizationMethods,
self.quantization.lower())
# Parse quantization method from the HF model config, if available.
quant_cfg = self._parse_quant_hf_config()
if quant_cfg is not None:
quant_method = quant_cfg.get("quant_method", "").lower()
quant_method = quant_method.replace("compressed_tensors",
"compressed-tensors")
quant_cfg["quant_method"] = quant_method
# Quantization methods which are overrides (i.e. they have a
# `override_quantization_method` method) must be checked in order
# of preference (this is particularly important for GPTQ).
overrides = [
"marlin",
"bitblas",
"gptq_marlin_24",
"gptq_marlin",
"gptq_bitblas",
"awq_marlin",
"ipex",
"moe_wna16",
]
quantization_methods = [
q for q in supported_quantization if q not in overrides
]
# Any custom overrides will be in quantization_methods so we place
# them at the start of the list so custom overrides have preference
# over the built in ones.
quantization_methods = quantization_methods + overrides
# Detect which checkpoint is it
for name in quantization_methods:
method = get_quantization_config(name)
quantization_override = method.override_quantization_method(
quant_cfg, self.quantization)
if quantization_override is not None:
# Raise error if the override is not custom (custom would
# be in QUANTIZATION_METHODS but not QuantizationMethods)
# and hasn't been added to the overrides list.
if (name in get_args(QuantizationMethods)
and name not in overrides):
raise ValueError(
f"Quantization method {name} is an override but "
"is has not been added to the `overrides` list "
"above. This is necessary to ensure that the "
"overrides are checked in order of preference.")
quant_method = quantization_override
self.quantization = quantization_override
break
# Verify quantization configurations.
if self.quantization is None:
self.quantization = quant_method
elif self.quantization != quant_method:
raise ValueError(
"Quantization method specified in the model config "
f"({quant_method}) does not match the quantization "
f"method specified in the `quantization` argument "
f"({self.quantization}).")
if self.quantization is not None:
if self.quantization not in supported_quantization:
raise ValueError(
f"Unknown quantization method: {self.quantization}. Must "
f"be one of {supported_quantization}.")
from vllm.platforms import current_platform
current_platform.verify_quantization(self.quantization)
if self.quantization not in optimized_quantization_methods:
logger.warning(
"%s quantization is not fully "
"optimized yet. The speed can be slower than "
"non-quantized models.", self.quantization)
def _verify_cuda_graph(self) -> None:
self.max_seq_len_to_capture = min(self.max_seq_len_to_capture,
self.max_model_len)
ROCM_UNSUPPORTED_MODELS = ['mllama']
if (self.hf_config.model_type in ROCM_UNSUPPORTED_MODELS
and not self.enforce_eager and current_platform.is_rocm()):
logger.warning(
"CUDA graph is not supported for %s on ROCm yet, fallback "
"to the eager mode.", self.hf_config.model_type)
self.enforce_eager = True
def _verify_bnb_config(self) -> None:
"""
The current version of bitsandbytes (0.45.3) with 8-bit models does not
yet support CUDA graph.
# TODO Remove this when bitsandbytes supports.
"""
is_bitsandbytes = self.quantization == "bitsandbytes"
has_quantization_config = (getattr(self.hf_config,
"quantization_config", None)
is not None)
is_8bit = (self.hf_config.quantization_config.get(
"load_in_8bit", False) if has_quantization_config else False)
if all([
is_bitsandbytes,
has_quantization_config,
is_8bit,
not self.enforce_eager,
]):
logger.warning(
"CUDA graph is not supported on BitsAndBytes 8bit yet, "
"fallback to the eager mode.")
self.enforce_eager = True
def _verify_with_expert_parallelism(self) -> None:
num_expert_names = [
"moe_num_experts", # Dbrx
"num_experts", # Jamba
"n_routed_experts", # DeepSeek
"num_local_experts", # Mixtral
]
num_experts = 0
for name in num_expert_names:
num_experts = getattr(self.hf_text_config, name, 0)
if num_experts > 0:
break
if num_experts < 1:
raise ValueError(
"Number of experts in the model must be greater than 0 "
"when expert parallelism is enabled.")
def verify_async_output_proc(self, parallel_config, speculative_config,
device_config) -> None:
if not self.use_async_output_proc:
# Nothing to check
return
if parallel_config.pipeline_parallel_size > 1:
self.use_async_output_proc = False
return
# Reminder: Please update docs/source/features/compatibility_matrix.md
# If the feature combo become valid
from vllm.platforms import current_platform
if not current_platform.is_async_output_supported(self.enforce_eager):
self.use_async_output_proc = False
return
if envs.VLLM_USE_RAY_SPMD_WORKER:
self.use_async_output_proc = False
return
# Async postprocessor is not necessary for pooling models
# since there is no token generation
if self.runner_type == "pooling":
self.use_async_output_proc = False
# Reminder: Please update docs/source/features/compatibility_matrix.md
# If the feature combo become valid
if speculative_config:
self.use_async_output_proc = False
def verify_with_parallel_config(
self,
parallel_config: "ParallelConfig",
) -> None:
if parallel_config.distributed_executor_backend == "external_launcher":
assert self.seed is not None, (
"Seed must be set when using external launcher backend to "
"make sure sampling results are the same across workers.")
total_num_attention_heads = getattr(self.hf_text_config,
"num_attention_heads", 0)
tensor_parallel_size = parallel_config.tensor_parallel_size
if total_num_attention_heads % tensor_parallel_size != 0:
raise ValueError(
f"Total number of attention heads ({total_num_attention_heads})"
" must be divisible by tensor parallel size "
f"({tensor_parallel_size}).")
if parallel_config.enable_expert_parallel:
self._verify_with_expert_parallelism()
pipeline_parallel_size = parallel_config.pipeline_parallel_size
if pipeline_parallel_size > 1:
if not self.registry.is_pp_supported_model(self.architectures):
raise NotImplementedError(
"Pipeline parallelism is not supported for this model. "
"Supported models implement the `SupportsPP` interface.")
if self.use_async_output_proc:
self.use_async_output_proc = False
def get_hf_config_sliding_window(
self) -> Union[Optional[int], list[Optional[int]]]:
"""Get the sliding window size, or None if disabled."""
# Some models, like Qwen2 and Qwen1.5, use `use_sliding_window` in
# addition to sliding window size. We check if that field is present
# and if it's False, return None.
if (hasattr(self.hf_text_config, "use_sliding_window")
and not self.hf_text_config.use_sliding_window):
return None
return getattr(self.hf_text_config, "sliding_window", None)
def get_sliding_window(self) -> Optional[Union[int, list[Optional[int]]]]:
"""Get the sliding window size, or None if disabled.
"""
# If user disables sliding window, return None.
if self.disable_sliding_window:
return None
# Otherwise get the value from the hf config.
return self.get_hf_config_sliding_window()
def get_vocab_size(self) -> int:
return self.hf_text_config.vocab_size
def get_hidden_size(self) -> int:
return self.hf_text_config.hidden_size
@property
def is_deepseek_mla(self) -> bool:
if not hasattr(self.hf_text_config, "model_type"):
return False
elif self.hf_text_config.model_type in \
('deepseek_v2', 'deepseek_v3', 'deepseek_mtp'):
return self.hf_text_config.kv_lora_rank is not None
elif self.hf_text_config.model_type == 'eagle':
# if the model is an EAGLE module, check for the
# underlying architecture
return self.hf_text_config.model.model_type in \
('deepseek_v2', 'deepseek_v3') \
and self.hf_text_config.kv_lora_rank is not None
return False
def get_head_size(self) -> int:
# TODO remove hard code
if self.is_deepseek_mla:
qk_rope_head_dim = getattr(self.hf_text_config, "qk_rope_head_dim",
0)
if self.use_mla:
return self.hf_text_config.kv_lora_rank + qk_rope_head_dim
else:
qk_nope_head_dim = getattr(self.hf_text_config,
"qk_nope_head_dim", 0)
if qk_rope_head_dim and qk_nope_head_dim:
return qk_rope_head_dim + qk_nope_head_dim
if hasattr(self.hf_text_config,
"model_type") and (self.hf_text_config.model_type
== "zamba2"):
return self.hf_text_config.attention_head_dim
if self.is_attention_free:
return 0
# NOTE: Some configs may set head_dim=None in the config
if getattr(self.hf_text_config, "head_dim", None) is not None:
return self.hf_text_config.head_dim
# FIXME(woosuk): This may not be true for all models.
return (self.hf_text_config.hidden_size //
self.hf_text_config.num_attention_heads)
def get_total_num_kv_heads(self) -> int:
"""Returns the total number of KV heads."""
# For GPTBigCode & Falcon:
# NOTE: for falcon, when new_decoder_architecture is True, the
# multi_query flag is ignored and we use n_head_kv for the number of
# KV heads.
falcon_model_types = ["falcon", "RefinedWeb", "RefinedWebModel"]
new_decoder_arch_falcon = (
self.hf_config.model_type in falcon_model_types
and getattr(self.hf_config, "new_decoder_architecture", False))
if not new_decoder_arch_falcon and getattr(self.hf_text_config,
"multi_query", False):
# Multi-query attention, only one KV head.
# Currently, tensor parallelism is not supported in this case.
return 1
# For DBRX and MPT
if self.hf_config.model_type == "mpt":
if "kv_n_heads" in self.hf_config.attn_config:
return self.hf_config.attn_config["kv_n_heads"]
return self.hf_config.num_attention_heads
if self.hf_config.model_type == "dbrx":
return getattr(self.hf_config.attn_config, "kv_n_heads",
self.hf_config.num_attention_heads)
if self.hf_config.model_type == "nemotron-nas":
for block in self.hf_config.block_configs:
if not block.attention.no_op:
return self.hf_config.num_attention_heads \
// block.attention.n_heads_in_group
raise RuntimeError("Couldn't determine number of kv heads")
if self.is_attention_free:
return 0
attributes = [
# For Falcon:
"n_head_kv",
"num_kv_heads",
# For LLaMA-2:
"num_key_value_heads",
# For ChatGLM:
"multi_query_group_num",
]
for attr in attributes:
num_kv_heads = getattr(self.hf_text_config, attr, None)
if num_kv_heads is not None:
return num_kv_heads
# For non-grouped-query attention models, the number of KV heads is
# equal to the number of attention heads.
return self.hf_text_config.num_attention_heads
def get_num_kv_heads(self, parallel_config: "ParallelConfig") -> int:
"""Returns the number of KV heads per GPU."""
if self.use_mla:
# When using MLA during decode it becomes MQA
return 1
total_num_kv_heads = self.get_total_num_kv_heads()
# If tensor parallelism is used, we divide the number of KV heads by
# the tensor parallel size. We will replicate the KV heads in the
# case where the number of KV heads is smaller than the tensor
# parallel size so each GPU has at least one KV head.
return max(1,
total_num_kv_heads // parallel_config.tensor_parallel_size)
def get_num_attention_heads(self,
parallel_config: "ParallelConfig") -> int:
num_heads = getattr(self.hf_text_config, "num_attention_heads", 0)
return num_heads // parallel_config.tensor_parallel_size
def get_layers_start_end_indices(
self, parallel_config: "ParallelConfig") -> tuple[int, int]:
from vllm.distributed.utils import get_pp_indices
if self.hf_text_config.model_type == "deepseek_mtp":
total_num_hidden_layers = getattr(self.hf_text_config,
"num_nextn_predict_layers", 0)
else:
total_num_hidden_layers = getattr(self.hf_text_config,
"num_hidden_layers", 0)
# the layout order is: DP x PP x TP
pp_rank = (parallel_config.rank // parallel_config.tensor_parallel_size
) % parallel_config.pipeline_parallel_size
pp_size = parallel_config.pipeline_parallel_size
start, end = get_pp_indices(total_num_hidden_layers, pp_rank, pp_size)
return start, end
def get_num_layers(self, parallel_config: "ParallelConfig") -> int:
start, end = self.get_layers_start_end_indices(parallel_config)
return end - start
def get_num_layers_by_block_type(
self,
parallel_config: "ParallelConfig",
block_type: LayerBlockType = LayerBlockType.attention,
) -> int:
# This function relies on 'layers_block_type' in hf_config,
# for w/o this attribute, we will need to have workarounds like so
attn_block_type = block_type == LayerBlockType.attention
is_transformer = not self.is_hybrid and \
not self.has_noops and \
not self.is_attention_free
start, end = self.get_layers_start_end_indices(parallel_config)
if is_transformer:
# Handle the basic case first
return end - start if attn_block_type else 0
elif self.is_attention_free:
# Attention free
# Note that this code assumes there
# is only one type of attention-free block type.
return 0 if attn_block_type else end - start
elif self.has_noops:
block_configs = self.hf_config.block_configs
return sum(not bc.attention.no_op
for bc in block_configs[start:end])
else:
# Hybrid model Jamba
layers_block_type_value = getattr(self.hf_config,
"layers_block_type", None)
if layers_block_type_value is not None:
if hasattr(self.hf_text_config,
"model_type") and (self.hf_text_config.model_type
== "zamba2"):
if attn_block_type:
return sum(t == "hybrid"
for t in layers_block_type_value[start:end])
else:
return self.get_num_layers(parallel_config)
return sum(t == block_type.value
for t in layers_block_type_value[start:end])
# Hybrid model Minimax
attn_type_list = getattr(self.hf_config, "attn_type_list", None)
if attn_type_list:
return sum(t == 1 for t in attn_type_list[start:end])
if layers_block_type_value is None and attn_type_list is None:
raise ValueError(
"The model is an hybrid without a"
"layers_block_type or an attn_type_list in the hf_config,"
"cannot determine the num of "
f"{block_type.value} layers")
return sum(t == 1 for t in attn_type_list[start:end])
def get_multimodal_config(self) -> "MultiModalConfig":
"""
Get the multimodal configuration of the model.
Raises:
ValueError: If the model is not multimodal.
"""
if self.multimodal_config is None:
raise ValueError("The model is not multimodal.")
return self.multimodal_config
def try_get_generation_config(self) -> dict[str, Any]:
if self.generation_config in ("auto", "vllm"):
config = try_get_generation_config(
self.hf_config_path or self.model,
trust_remote_code=self.trust_remote_code,
revision=self.revision,
)
else:
config = try_get_generation_config(
self.generation_config,
trust_remote_code=self.trust_remote_code,
)
if config is None:
return {}
return config.to_diff_dict()
def get_diff_sampling_param(self) -> dict[str, Any]:
"""
This method returns a dictionary containing the parameters
that differ from the default sampling parameters. If
`generation_config` is `"vllm"`, an empty dictionary is returned.
Returns:
dict[str, Any]: A dictionary with the differing sampling
parameters, if `generation_config` is `"vllm"` an empty dictionary.
"""
if self.generation_config == "vllm":
config = {}
else:
config = self.try_get_generation_config()
# Overriding with given generation config
config.update(self.override_generation_config)
available_params = [
"repetition_penalty",
"temperature",
"top_k",
"top_p",
"min_p",
"max_new_tokens",
]
if any(p in config for p in available_params):
diff_sampling_param = {
p: config.get(p)
for p in available_params if config.get(p) is not None
}
# Huggingface definition of max_new_tokens is equivalent
# to vLLM's max_tokens
if "max_new_tokens" in diff_sampling_param:
diff_sampling_param["max_tokens"] = diff_sampling_param.pop(
"max_new_tokens")
else:
diff_sampling_param = {}
if diff_sampling_param:
logger.warning_once(
"Default sampling parameters have been overridden by the "
"model's Hugging Face generation config recommended from the "
"model creator. If this is not intended, please relaunch "
"vLLM instance with `--generation-config vllm`.")
return diff_sampling_param
@property
def is_encoder_decoder(self) -> bool:
"""Extract the HF encoder/decoder model flag."""
return is_encoder_decoder(self.hf_config)
@property
def uses_mrope(self) -> bool:
return uses_mrope(self.hf_config)
@property
def is_multimodal_model(self) -> bool:
return self.multimodal_config is not None
@property
def is_cross_encoder(self) -> bool:
return self.registry.is_cross_encoder_model(self.architectures)
@property
def use_mla(self) -> bool:
return self.is_deepseek_mla and not envs.VLLM_MLA_DISABLE
@property
def supported_runner_types(self) -> set[RunnerType]:
return {_TASK_RUNNER[task] for task in self.supported_tasks}
@property
def runner_type(self) -> RunnerType:
return _TASK_RUNNER[cast(_ResolvedTask, self.task)]
@property
def is_v1_compatible(self) -> bool:
architectures = getattr(self.hf_config, "architectures", [])
return ModelRegistry.is_v1_compatible(architectures)
@property
def is_matryoshka(self) -> bool:
return (hasattr(self.hf_config, "matryoshka_dimensions")
or getattr(self.hf_config, "is_matryoshka", False))
@property
def matryoshka_dimensions(self):
return getattr(self.hf_config, "matryoshka_dimensions", None)
BlockSize = Literal[1, 8, 16, 32, 64, 128]
CacheDType = Literal["auto", "fp8", "fp8_e4m3", "fp8_e5m2"]
PrefixCachingHashAlgo = Literal["builtin", "sha256"]
@config
@dataclass
class CacheConfig:
"""Configuration for the KV cache."""
block_size: BlockSize = None # type: ignore
"""Size of a contiguous cache block in number of tokens. This is ignored on
neuron devices and set to `--max-model-len`. On CUDA devices, only block
sizes up to 32 are supported. On HPU devices, block size defaults to 128.
This config has no static default. If left unspecified by the user, it will
be set in `Platform.check_and_update_configs()` based on the current
platform."""
gpu_memory_utilization: float = 0.9
"""The fraction of GPU memory to be used for the model executor, which can
range from 0 to 1. For example, a value of 0.5 would imply 50% GPU memory
utilization. If unspecified, will use the default value of 0.9. This is a
per-instance limit, and only applies to the current vLLM instance. It does
not matter if you have another vLLM instance running on the same GPU. For
example, if you have two vLLM instances running on the same GPU, you can
set the GPU memory utilization to 0.5 for each instance."""
swap_space: float = 4
"""Size of the CPU swap space per GPU (in GiB)."""
cache_dtype: CacheDType = "auto"
"""Data type for kv cache storage. If "auto", will use model data type.
CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. ROCm (AMD GPU) supports
fp8 (=fp8_e4m3)."""
is_attention_free: bool = False
"""Whether the model is attention-free. This is primarily set in
`ModelConfig` and that value should be manually duplicated here."""
num_gpu_blocks_override: Optional[int] = None
"""Number of GPU blocks to use. This overrides the profiled `num_gpu_blocks`
if specified. Does nothing if `None`. Used for testing preemption."""
sliding_window: Optional[int] = None
"""Sliding window size for the KV cache. This is primarily set in
`ModelConfig` and that value should be manually duplicated here."""
enable_prefix_caching: Optional[bool] = None
"""Whether to enable prefix caching. Disabled by default for V0. Enabled by
default for V1."""
prefix_caching_hash_algo: PrefixCachingHashAlgo = "builtin"
"""Set the hash algorithm for prefix caching:\n
- "builtin" is Python's built-in hash.\n
- "sha256" is collision resistant but with certain overheads."""
cpu_offload_gb: float = 0
"""The space in GiB to offload to CPU, per GPU. Default is 0, which means
no offloading. Intuitively, this argument can be seen as a virtual way to
increase the GPU memory size. For example, if you have one 24 GB GPU and
set this to 10, virtually you can think of it as a 34 GB GPU. Then you can
load a 13B model with BF16 weight, which requires at least 26GB GPU memory.
Note that this requires fast CPU-GPU interconnect, as part of the model is
loaded from CPU memory to GPU memory on the fly in each model forward pass.
"""
calculate_kv_scales: bool = False
"""This enables dynamic calculation of `k_scale` and `v_scale` when
kv_cache_dtype is fp8. If `False`, the scales will be loaded from the model
checkpoint if available. Otherwise, the scales will default to 1.0."""
# Will be set after profiling.
num_gpu_blocks: Optional[int] = field(default=None, init=False)
"""The number of blocks to allocate for GPU memory."""
num_cpu_blocks: Optional[int] = field(default=None, init=False)
"""The number of blocks to allocate for CPU memory."""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
factors: list[Any] = []
factors.append(self.cache_dtype)
# `cpu_offload_gb` does not use `torch.compile` yet.
hash_str = hashlib.md5(str(factors).encode(),
usedforsecurity=False).hexdigest()
return hash_str
def __post_init__(self) -> None:
self.swap_space_bytes = self.swap_space * GiB_bytes
self._verify_args()
self._verify_cache_dtype()
self._verify_prefix_caching()
def metrics_info(self):
# convert cache_config to dict(key: str, value: str) for prometheus
# metrics info
return {key: str(value) for key, value in self.__dict__.items()}
def _verify_args(self) -> None:
if self.cpu_offload_gb < 0:
raise ValueError("CPU offload space must be non-negative"
f", but got {self.cpu_offload_gb}")
if self.gpu_memory_utilization > 1.0:
raise ValueError(
"GPU memory utilization must be less than 1.0. Got "
f"{self.gpu_memory_utilization}.")
def _verify_cache_dtype(self) -> None:
if self.cache_dtype == "auto":
pass
elif self.cache_dtype in get_args(CacheDType):
logger.info(
"Using fp8 data type to store kv cache. It reduces the GPU "
"memory footprint and boosts the performance. "
"Meanwhile, it may cause accuracy drop without a proper "
"scaling factor")
else:
raise ValueError(f"Unknown kv cache dtype: {self.cache_dtype}")
def _verify_prefix_caching(self) -> None:
if not self.enable_prefix_caching:
return
if self.sliding_window is not None and not envs.VLLM_USE_V1:
raise NotImplementedError(
"Prefix caching is not supported with sliding window. "
"Run with --disable-sliding-window to use prefix caching.")
if (self.enable_prefix_caching and self.prefix_caching_hash_algo
not in get_args(PrefixCachingHashAlgo)):
raise ValueError(
"Unknown prefix caching hash algorithm: "
f"{self.prefix_caching_hash_algo}. Must be one of "
f"{get_args(PrefixCachingHashAlgo)}.")
def verify_with_parallel_config(
self,
parallel_config: "ParallelConfig",
) -> None:
total_cpu_memory = get_cpu_memory()
# FIXME(woosuk): Here, it is assumed that the GPUs in a tensor parallel
# group are in the same node. However, the GPUs may span multiple nodes.
num_gpus_per_node = parallel_config.tensor_parallel_size
cpu_memory_usage = self.swap_space_bytes * num_gpus_per_node
msg = (f"{cpu_memory_usage / GiB_bytes:.2f} GiB out of the "
f"{total_cpu_memory / GiB_bytes:.2f} GiB total CPU memory "
"is allocated for the swap space.")
if cpu_memory_usage > 0.7 * total_cpu_memory:
raise ValueError("Too large swap space. " + msg)
elif cpu_memory_usage > 0.4 * total_cpu_memory:
logger.warning("Possibly too large swap space. %s", msg)
@config
@dataclass
class TokenizerPoolConfig:
"""This config is deprecated and will be removed in a future release.
Passing these parameters will have no effect. Please remove them from your
configurations.
"""
pool_size: int = 0
"""This parameter is deprecated and will be removed in a future release.
Passing this parameter will have no effect. Please remove it from your
configurations."""
pool_type: str = "ray"
"""This parameter is deprecated and will be removed in a future release.
Passing this parameter will have no effect. Please remove it from your
configurations."""
extra_config: dict = field(default_factory=dict)
"""This parameter is deprecated and will be removed in a future release.
Passing this parameter will have no effect. Please remove it from your
configurations."""
def __post_init__(self) -> None:
logger.warning_once(
"TokenizerPoolConfig is deprecated and will be removed in a "
"future release. Passing this parameter will have no effect. "
"Please remove it from your configurations.")
class LoadFormat(str, enum.Enum):
AUTO = "auto"
PT = "pt"
SAFETENSORS = "safetensors"
NPCACHE = "npcache"
DUMMY = "dummy"
TENSORIZER = "tensorizer"
SHARDED_STATE = "sharded_state"
GGUF = "gguf"
BITSANDBYTES = "bitsandbytes"
MISTRAL = "mistral"
RUNAI_STREAMER = "runai_streamer"
RUNAI_STREAMER_SHARDED = "runai_streamer_sharded"
FASTSAFETENSORS = "fastsafetensors"
@config
@dataclass
class LoadConfig:
"""Configuration for loading the model weights."""
load_format: Union[str, LoadFormat,
"BaseModelLoader"] = LoadFormat.AUTO.value
"""The format of the model weights to load:\n
- "auto" will try to load the weights in the safetensors format and fall
back to the pytorch bin format if safetensors format is not available.\n
- "pt" will load the weights in the pytorch bin format.\n
- "safetensors" will load the weights in the safetensors format.\n
- "npcache" will load the weights in pytorch format and store a numpy cache
to speed up the loading.\n
- "dummy" will initialize the weights with random values, which is mainly
for profiling.\n
- "tensorizer" will use CoreWeave's tensorizer library for fast weight
loading. See the Tensorize vLLM Model script in the Examples section for
more information.\n
- "runai_streamer" will load the Safetensors weights using Run:ai Model
Streamer.\n
- "bitsandbytes" will load the weights using bitsandbytes quantization.\n
- "sharded_state" will load weights from pre-sharded checkpoint files,
supporting efficient loading of tensor-parallel models.\n
- "gguf" will load weights from GGUF format files (details specified in
https://github.com/ggml-org/ggml/blob/master/docs/gguf.md).\n
- "mistral" will load weights from consolidated safetensors files used by
Mistral models."""
download_dir: Optional[str] = None
"""Directory to download and load the weights, default to the default
cache directory of Hugging Face."""
model_loader_extra_config: dict = field(default_factory=dict)
"""Extra config for model loader. This will be passed to the model loader
corresponding to the chosen load_format. This should be a JSON string that
will be parsed into a dictionary."""
ignore_patterns: Optional[Union[list[str], str]] = None
"""The list of patterns to ignore when loading the model. Default to
"original/**/*" to avoid repeated loading of llama's checkpoints."""
use_tqdm_on_load: bool = True
"""Whether to enable tqdm for showing progress bar when loading model
weights."""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
# no factors to consider.
# this config will not affect the computation graph.
factors: list[Any] = []
hash_str = hashlib.md5(str(factors).encode(),
usedforsecurity=False).hexdigest()
return hash_str
def __post_init__(self):
if isinstance(self.load_format, str):
load_format = self.load_format.lower()
self.load_format = LoadFormat(load_format)
if self.ignore_patterns is not None and len(self.ignore_patterns) > 0:
logger.info(
"Ignoring the following patterns when downloading weights: %s",
self.ignore_patterns)
else:
self.ignore_patterns = ["original/**/*"]
DistributedExecutorBackend = Literal["ray", "mp", "uni", "external_launcher"]
@config
@dataclass
class ParallelConfig:
"""Configuration for the distributed execution."""
pipeline_parallel_size: int = 1
"""Number of pipeline parallel groups."""
tensor_parallel_size: int = 1
"""Number of tensor parallel groups."""
data_parallel_size: int = 1
"""Number of data parallel groups. MoE layers will be sharded according to
the product of the tensor parallel size and data parallel size."""
data_parallel_rank: int = 0
"""Rank of the data parallel group."""
_data_parallel_rank_local: Optional[int] = field(default=None, init=False)
"""Private field to store the local rank of the data parallel group."""
@property
def data_parallel_rank_local(self) -> int:
"""Local rank of the data parallel group, defaults to global rank."""
if self._data_parallel_rank_local is None:
return self.data_parallel_rank
return self._data_parallel_rank_local
@data_parallel_rank_local.setter
def data_parallel_rank_local(self, value: int) -> None:
"""Set the local rank of the data parallel group."""
self._data_parallel_rank_local = value
data_parallel_master_ip: str = "127.0.0.1"
"""IP of the data parallel master."""
data_parallel_master_port: int = 29500
"""Port of the data parallel master."""
enable_expert_parallel: bool = False
"""Use expert parallelism instead of tensor parallelism for MoE layers."""
max_parallel_loading_workers: Optional[int] = None
"""Maximum number of parallal loading workers when loading model
sequentially in multiple batches. To avoid RAM OOM when using tensor
parallel and large models."""
disable_custom_all_reduce: bool = False
"""Disable the custom all-reduce kernel and fall back to NCCL."""
tokenizer_pool_config: Optional[TokenizerPoolConfig] = None
"""This parameter is deprecated and will be removed in a future release.
Please remove it from your configs"""
ray_workers_use_nsight: bool = False
"""Whether to profile Ray workers with nsight, see https://docs.ray.io/en/latest/ray-observability/user-guides/profiling.html#profiling-nsight-profiler."""
placement_group: Optional["PlacementGroup"] = None
"""ray distributed model workers placement group."""
distributed_executor_backend: Optional[Union[DistributedExecutorBackend,
type["ExecutorBase"]]] = None
"""Backend to use for distributed model
workers, either "ray" or "mp" (multiprocessing). If the product
of pipeline_parallel_size and tensor_parallel_size is less than
or equal to the number of GPUs available, "mp" will be used to
keep processing on a single host. Otherwise, this will default
to "ray" if Ray is installed and fail otherwise. Note that tpu
and hpu only support Ray for distributed inference."""
worker_cls: str = "auto"
"""The full name of the worker class to use. If "auto", the worker class
will be determined based on the platform."""
sd_worker_cls: str = "auto"
"""The full name of the worker class to use for speculative decofing.
If "auto", the worker class will be determined based on the platform."""
worker_extension_cls: str = ""
"""The full name of the worker extension class to use. The worker extension
class is dynamically inherited by the worker class. This is used to inject
new attributes and methods to the worker class for use in collective_rpc
calls."""
world_size: int = field(init=False)
"""world_size is TPxPP, it affects the number of workers we create."""
world_size_across_dp: int = field(init=False)
"""world_size_across_dp is TPxPPxDP, it is the size of the world
including data parallelism."""
rank: int = 0
"""Global rank in distributed setup."""
def get_next_dp_init_port(self) -> int:
"""
We might need to initialize process groups in multiple
processes that is related to data parallelism,
e.g. both in the worker and in the engine, which
can live in different processes. To avoid port conflicts, we
increment the port number each time we need to initialize a
new process group related to data parallelism.
"""
answer = self.data_parallel_master_port
self.data_parallel_master_port += 1
return answer
def stateless_init_dp_group(self) -> "ProcessGroup":
from vllm.distributed.utils import (
stateless_init_torch_distributed_process_group)
# use gloo since the engine process might not have cuda device
dp_group = stateless_init_torch_distributed_process_group(
self.data_parallel_master_ip,
self.get_next_dp_init_port(),
self.data_parallel_rank,
self.data_parallel_size,
backend="gloo")
return dp_group
@staticmethod
def has_unfinished_dp(dp_group: "ProcessGroup",
has_unfinished: bool) -> bool:
tensor = torch.tensor([has_unfinished],
dtype=torch.int32,
device="cpu")
# dp rank 0: has_unfinished_seqs=True
# dp rank 1: has_unfinished_seqs=False
# aggregated: has_unfinished_seqs=True
# so this is an OR operation, i.e. MAX in integers
torch.distributed.all_reduce(tensor, op=ReduceOp.MAX, group=dp_group)
aggregated_has_unfinished = bool(tensor.item())
return aggregated_has_unfinished
def compute_hash(self):
"""
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
factors: list[Any] = []
factors.append(self.pipeline_parallel_size)
factors.append(self.tensor_parallel_size)
factors.append(self.enable_expert_parallel)
return hashlib.sha256(str(factors).encode()).hexdigest()
def __post_init__(self) -> None:
self.world_size = self.pipeline_parallel_size * \
self.tensor_parallel_size
if self.data_parallel_size > 1:
# Data parallel was specified in the engine args.
self.data_parallel_master_port = get_open_port()
# TODO multi-node
else:
# Otherwise fall back to env vars (e.g. for offline SPMD case).
self.data_parallel_size = envs.VLLM_DP_SIZE
self.data_parallel_rank = envs.VLLM_DP_RANK
self.data_parallel_rank_local = envs.VLLM_DP_RANK_LOCAL
self.data_parallel_master_ip = envs.VLLM_DP_MASTER_IP
self.data_parallel_master_port = envs.VLLM_DP_MASTER_PORT
self.world_size_across_dp = self.world_size * self.data_parallel_size
if self.distributed_executor_backend == "external_launcher":
import os
os.environ["VLLM_ENABLE_V1_MULTIPROCESSING"] = "0"
logger.info("Disabling V1 multiprocessing for external launcher.")
ray_only_devices: list[str] = []
from vllm.platforms import current_platform
if (current_platform.device_type in ray_only_devices
and self.world_size > 1):
if self.distributed_executor_backend is None:
self.distributed_executor_backend = "ray"
if self.distributed_executor_backend != "ray":
raise ValueError(
f"{current_platform.device_type.upper()} backend only "
"supports Ray for distributed inference.")
if self.distributed_executor_backend is None and self.world_size > 1:
# We use multiprocessing by default if world_size fits on the
# current node and we aren't in a ray placement group.
from vllm.executor import ray_utils
backend: DistributedExecutorBackend = "mp"
ray_found = ray_utils.ray_is_available()
if current_platform.is_neuron():
# neuron uses single process to control multiple devices
backend = "uni"
elif (current_platform.is_cuda()
and cuda_device_count_stateless() < self.world_size):
if not ray_found:
raise ValueError("Unable to load Ray which is "
"required for multi-node inference, "
"please install Ray with `pip install "
"ray`.") from ray_utils.ray_import_err
backend = "ray"
elif ray_found:
if self.placement_group:
backend = "ray"
else:
from ray import is_initialized as ray_is_initialized
if ray_is_initialized():
from ray.util import get_current_placement_group
if get_current_placement_group():
backend = "ray"
self.distributed_executor_backend = backend
logger.info("Defaulting to use %s for distributed inference",
backend)
if self.distributed_executor_backend is None and self.world_size == 1:
self.distributed_executor_backend = "uni"
self._verify_args()
@property
def use_ray(self) -> bool:
return self.distributed_executor_backend == "ray" or (
isinstance(self.distributed_executor_backend, type)
and self.distributed_executor_backend.uses_ray)
def _verify_args(self) -> None:
# Lazy import to avoid circular import
from vllm.executor.executor_base import ExecutorBase
from vllm.platforms import current_platform
if self.distributed_executor_backend not in (
"ray", "mp", "uni",
"external_launcher", None) and not (isinstance(
self.distributed_executor_backend, type) and issubclass(
self.distributed_executor_backend, ExecutorBase)):
raise ValueError(
"Unrecognized distributed executor backend "
f"{self.distributed_executor_backend}. Supported "
"values are 'ray', 'mp' 'uni', 'external_launcher' or"
" custom ExecutorBase subclass.")
if self.use_ray:
from vllm.executor import ray_utils
ray_utils.assert_ray_available()
if not current_platform.use_custom_allreduce():
self.disable_custom_all_reduce = True
logger.info(
"Disabled the custom all-reduce kernel because it is not "
"supported on current platform.")
if self.ray_workers_use_nsight and not self.use_ray:
raise ValueError("Unable to use nsight profiling unless workers "
"run with Ray.")
assert isinstance(self.worker_extension_cls, str), (
"worker_extension_cls must be a string (qualified class name).")
PreemptionMode = Literal["swap", "recompute"]
SchedulerPolicy = Literal["fcfs", "priority"]
@config
@dataclass
class SchedulerConfig:
"""Scheduler configuration."""
runner_type: RunnerType = "generate"
"""The runner type to launch for the model."""
max_num_batched_tokens: int = None # type: ignore
"""Maximum number of tokens to be processed in a single iteration.
This config has no static default. If left unspecified by the user, it will
be set in `EngineArgs.create_engine_config` based on the usage context."""
max_num_seqs: int = None # type: ignore
"""Maximum number of sequences to be processed in a single iteration.
This config has no static default. If left unspecified by the user, it will
be set in `EngineArgs.create_engine_config` based on the usage context."""
max_model_len: int = None # type: ignore
"""Maximum length of a sequence (including prompt and generated text). This
is primarily set in `ModelConfig` and that value should be manually
duplicated here."""
max_num_partial_prefills: int = 1
"""For chunked prefill, the maximum number of sequences that can be
partially prefilled concurrently."""
max_long_partial_prefills: int = 1
"""For chunked prefill, the maximum number of prompts longer than
long_prefill_token_threshold that will be prefilled concurrently. Setting
this less than max_num_partial_prefills will allow shorter prompts to jump
the queue in front of longer prompts in some cases, improving latency."""
long_prefill_token_threshold: int = 0
"""For chunked prefill, a request is considered long if the prompt is
longer than this number of tokens."""
num_lookahead_slots: int = 0
"""The number of slots to allocate per sequence per
step, beyond the known token ids. This is used in speculative
decoding to store KV activations of tokens which may or may not be
accepted.
NOTE: This will be replaced by speculative config in the future; it is
present to enable correctness tests until then."""
delay_factor: float = 0.0
"""Apply a delay (of delay factor multiplied by previous
prompt latency) before scheduling next prompt."""
enable_chunked_prefill: bool = None # type: ignore
"""If True, prefill requests can be chunked based
on the remaining max_num_batched_tokens."""
is_multimodal_model: bool = False
"""True if the model is multimodal."""
# TODO (ywang96): Make this configurable.
max_num_encoder_input_tokens: int = field(init=False)
"""Multimodal encoder compute budget, only used in V1.
NOTE: This is not currently configurable. It will be overridden by
max_num_batched_tokens in case max multimodal embedding size is larger."""
# TODO (ywang96): Make this configurable.
encoder_cache_size: int = field(init=False)
"""Multimodal encoder cache size, only used in V1.
NOTE: This is not currently configurable. It will be overridden by
max_num_batched_tokens in case max multimodal embedding size is larger."""
preemption_mode: Optional[PreemptionMode] = None
"""Whether to perform preemption by swapping or
recomputation. If not specified, we determine the mode as follows:
We use recomputation by default since it incurs lower overhead than
swapping. However, when the sequence group has multiple sequences
(e.g., beam search), recomputation is not currently supported. In
such a case, we use swapping instead."""
num_scheduler_steps: int = 1
"""Maximum number of forward steps per scheduler call."""
multi_step_stream_outputs: bool = True
"""If False, then multi-step will stream outputs at the end of all steps"""
send_delta_data: bool = False
"""Private API. If used, scheduler sends delta data to
workers instead of an entire data. It should be enabled only
when SPMD worker architecture is enabled. I.e.,
VLLM_USE_RAY_SPMD_WORKER=1"""
policy: SchedulerPolicy = "fcfs"
"""The scheduling policy to use:\n
- "fcfs" means first come first served, i.e. requests are handled in order
of arrival.\n
- "priority" means requests are handled based on given priority (lower
value means earlier handling) and time of arrival deciding any ties)."""
chunked_prefill_enabled: bool = field(init=False)
"""True if chunked prefill is enabled."""
disable_chunked_mm_input: bool = False
"""If set to true and chunked prefill is enabled, we do not want to
partially schedule a multimodal item. Only used in V1
This ensures that if a request has a mixed prompt
(like text tokens TTTT followed by image tokens IIIIIIIIII) where only
some image tokens can be scheduled (like TTTTIIIII, leaving IIIII),
it will be scheduled as TTTT in one step and IIIIIIIIII in the next."""
# scheduler class or path. "vllm.core.scheduler.Scheduler" (default)
# or "mod.custom_class".
scheduler_cls: Union[str, type[object]] = "vllm.core.scheduler.Scheduler"
"""The scheduler class to use. "vllm.core.scheduler.Scheduler" is the
default scheduler. Can be a class directly or the path to a class of form
"mod.custom_class"."""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
# no factors to consider.
# this config will not affect the computation graph.
factors: list[Any] = []
hash_str = hashlib.md5(str(factors).encode(),
usedforsecurity=False).hexdigest()
return hash_str
def __post_init__(self) -> None:
if self.max_model_len is None:
self.max_model_len = 8192
logger.warning(
"max_model_len was is not set. Defaulting to arbitrary value "
"of %d.", self.max_model_len)
if self.max_num_seqs is None:
self.max_num_seqs = 128
logger.warning(
"max_num_seqs was is not set. Defaulting to arbitrary value "
"of %d.", self.max_num_seqs)
if self.max_num_batched_tokens is None:
if self.enable_chunked_prefill:
if self.num_scheduler_steps > 1:
# Multi-step Chunked-Prefill doesn't allow prompt-chunking
# for now. Have max_num_batched_tokens set to max_model_len
# so we don't reject sequences on account of a short
# max_num_batched_tokens.
self.max_num_batched_tokens = max(
self.max_model_len, _DEFAULT_MAX_NUM_BATCHED_TOKENS)
else:
self.max_num_batched_tokens = (
_DEFAULT_MAX_NUM_BATCHED_TOKENS)
else:
# If max_model_len is too short, use
# _DEFAULT_MAX_NUM_BATCHED_TOKENS as the default value
# for higher throughput.
self.max_num_batched_tokens = max(
self.max_model_len, _DEFAULT_MAX_NUM_BATCHED_TOKENS)
if self.runner_type == "pooling":
# Choose specific value for higher throughput
self.max_num_batched_tokens = max(
self.max_num_batched_tokens,
_POOLING_MODEL_MAX_NUM_BATCHED_TOKENS,
)
if self.is_multimodal_model:
# The value needs to be at least the number of multimodal tokens
self.max_num_batched_tokens = max(
self.max_num_batched_tokens,
_MULTIMODAL_MODEL_MAX_NUM_BATCHED_TOKENS,
)
self.max_num_encoder_input_tokens = self.max_num_batched_tokens
self.encoder_cache_size = self.max_num_batched_tokens
if self.enable_chunked_prefill:
logger.info(
"Chunked prefill is enabled with max_num_batched_tokens=%d.",
self.max_num_batched_tokens)
self.chunked_prefill_enabled = self.enable_chunked_prefill
if self.max_num_partial_prefills > 1:
if self.long_prefill_token_threshold == 0:
self.long_prefill_token_threshold = int(self.max_model_len *
0.04)
logger.info(
"Concurrent partial prefills enabled with "
"max_num_partial_prefills=%d, max_long_partial_prefills=%d, "
"long_prefill_token_threshold=%d",
self.max_num_partial_prefills, self.max_long_partial_prefills,
self.long_prefill_token_threshold)
self._verify_args()
def _verify_args(self) -> None:
if (self.max_num_batched_tokens < self.max_model_len
and not self.chunked_prefill_enabled):
raise ValueError(
f"max_num_batched_tokens ({self.max_num_batched_tokens}) is "
f"smaller than max_model_len ({self.max_model_len}). "
"This effectively limits the maximum sequence length to "
"max_num_batched_tokens and makes vLLM reject longer "
"sequences. Please increase max_num_batched_tokens or "
"decrease max_model_len.")
if self.max_num_batched_tokens < self.max_num_seqs:
raise ValueError(
f"max_num_batched_tokens ({self.max_num_batched_tokens}) must "
"be greater than or equal to max_num_seqs "
f"({self.max_num_seqs}).")
if self.num_lookahead_slots < 0:
raise ValueError(
"num_lookahead_slots "
f"({self.num_lookahead_slots}) must be greater than or "
"equal to 0.")
if self.num_scheduler_steps < 1:
raise ValueError(
"num_scheduler_steps "
f"({self.num_scheduler_steps}) must be greater than or "
"equal to 1.")
if self.max_num_partial_prefills < 1:
raise ValueError(
f"max_num_partial_prefills ({self.max_num_partial_prefills}) "
"must be greater than or equal to 1.")
elif self.max_num_partial_prefills > 1:
if not self.chunked_prefill_enabled:
raise ValueError("Chunked prefill must be enabled to set "
"max_num_partial_prefills > 1.")
if self.long_prefill_token_threshold > self.max_model_len:
raise ValueError(
"long_prefill_token_threshold "
f"({self.long_prefill_token_threshold}) cannot be greater "
f"than the max_model_len ({self.max_model_len}).")
if (self.max_long_partial_prefills
< 1) or (self.max_long_partial_prefills
> self.max_num_partial_prefills):
raise ValueError(
f"max_long_partial_prefills ({self.max_long_partial_prefills}) "
"must be greater than or equal to 1 and less than or equal to "
f"max_num_partial_prefills ({self.max_num_partial_prefills}).")
@property
def is_multi_step(self) -> bool:
return self.num_scheduler_steps > 1
Device = Literal["auto", "cuda", "neuron", "cpu", "tpu", "xpu", "hpu"]
@config
@dataclass
class DeviceConfig:
"""Configuration for the device to use for vLLM execution."""
device: Union[Device, torch.device] = "auto"
"""Device type for vLLM execution."""
device_type: str = field(init=False)
"""Device type from the current platform. This is set in
`__post_init__`."""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
# no factors to consider.
# the device/platform information will be summarized
# by torch/vllm automatically.
factors: list[Any] = []
hash_str = hashlib.md5(str(factors).encode(),
usedforsecurity=False).hexdigest()
return hash_str
def __post_init__(self):
if self.device == "auto":
# Automated device type detection
from vllm.platforms import current_platform
self.device_type = current_platform.device_type
if not self.device_type:
raise RuntimeError(
"Failed to infer device type, please set "
"the environment variable `VLLM_LOGGING_LEVEL=DEBUG` "
"to turn on verbose logging to help debug the issue.")
else:
# Device type is assigned explicitly
self.device_type = self.device
# Some device types require processing inputs on CPU
if self.device_type in ["neuron"]:
self.device = torch.device("cpu")
elif self.device_type in ["tpu"]:
self.device = None
else:
# Set device with device type
self.device = torch.device(self.device_type)
SpeculativeMethod = Literal["ngram", "eagle", "medusa", "mlp_speculator",
"draft_model"]
SpeculativeAcceptanceMethod = Literal["rejection_sampler",
"typical_acceptance_sampler"]
@config
@dataclass
class SpeculativeConfig:
"""Configuration for speculative decoding."""
# General speculative decoding control
num_speculative_tokens: int = field(default=None,
init=True) # type: ignore
"""The number of speculative tokens, if provided. It will default to the
number in the draft model config if present, otherwise, it is required."""
model: Optional[str] = None
"""The name of the draft model, eagle head, or additional weights, if
provided."""
method: Optional[SpeculativeMethod] = None
"""The name of the speculative method to use. If users provide and set the
`model` param, the speculative method type will be detected automatically
if possible, if `model` param is not provided, the method name must be
provided.
If using `ngram` method, the related configuration `prompt_lookup_max` and
`prompt_lookup_min` should be considered."""
acceptance_method: SpeculativeAcceptanceMethod = "rejection_sampler"
"""The method to use for accepting draft tokens:\n
- "rejection_sampler" maps to `RejectionSampler`.\n
- "typical_acceptance_sampler" maps to `TypicalAcceptanceSampler`.
If using `typical_acceptance_sampler`, the related configuration
`posterior_threshold` and `posterior_alpha` should be considered."""
draft_tensor_parallel_size: Optional[int] = None
"""The degree of the tensor parallelism for the draft model. Can only be 1
or the same as the target model's tensor parallel size."""
disable_logprobs: bool = True
"""If set to True, token log probabilities are not returned during
speculative decoding. If set to False, token log probabilities are returned
according to the log probability settings in SamplingParams."""
# Draft model configuration
quantization: Optional[QuantizationMethods] = None
"""Quantization method that was used to quantize the draft model weights.
If `None`, we assume the model weights are not quantized. Note that it only
takes effect when using the draft model-based speculative method."""
max_model_len: Optional[int] = None
"""The maximum model length of the draft model. Used when testing the
ability to skip speculation for some sequences."""
revision: Optional[str] = None
"""The specific model version to use for the draft model. It can be a
branch name, a tag name, or a commit id. If unspecified, will use the
default version."""
code_revision: Optional[str] = None
"""The specific revision to use for the draft model code on Hugging Face
Hub. It can be a branch name, a tag name, or a commit id. If unspecified,
will use the default version."""
# Advanced control
disable_mqa_scorer: bool = False
"""Disable the MQA scorer and fall back to batch expansion for scoring
proposals."""
disable_by_batch_size: Optional[int] = None
"""Disable speculative decoding for new incoming requests when the number
of enqueued requests is larger than this value, if provided."""
# Ngram proposer configuration
prompt_lookup_max: Optional[int] = None
"""Maximum size of ngram token window when using Ngram proposer, required
when method is set to ngram."""
prompt_lookup_min: Optional[int] = None
"""Minimum size of ngram token window when using Ngram proposer, if
provided. Defaults to 1."""
# Typical acceptance sampler configuration
posterior_threshold: Optional[float] = None
"""A threshold value that sets a lower bound on the posterior probability
of a token in the target model for it to be accepted. This threshold is
used only when we use the `TypicalAcceptanceSampler` for token acceptance.
"""
posterior_alpha: Optional[float] = None
"""Scaling factor for entropy-based threshold, applied when using
`TypicalAcceptanceSampler`."""
# required configuration params passed from engine
target_model_config: ModelConfig = field(default=None,
init=True) # type: ignore
"""The configuration of the target model."""
target_parallel_config: ParallelConfig = field(default=None,
init=True) # type: ignore
"""The parallel configuration for the target model."""
enable_chunked_prefill: bool = field(default=None,
init=True) # type: ignore
"""Whether vLLM is configured to use chunked prefill or not. Used for
raising an error since it's not yet compatible with speculative decode."""
disable_log_stats: bool = field(default=None, init=True) # type: ignore
"""Whether to disable the periodic printing of stage times in speculative
decoding."""
# params generated in the post-init stage
draft_model_config: ModelConfig = field(default=None,
init=True) # type: ignore
"""The configuration of the draft model initialized internal."""
draft_parallel_config: ParallelConfig = field(default=None,
init=True) # type: ignore
"""The parallel configuration for the draft model initialized internal."""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
factors: list[Any] = []
# Eagle3 affects the computation graph because it returns intermediate
# hidden states in addition to the final hidden state.
factors.append(self.method == "eagle3")
hash_str = hashlib.md5(str(factors).encode(),
usedforsecurity=False).hexdigest()
return hash_str
@classmethod
def from_dict(cls, dict_value: dict) -> "SpeculativeConfig":
"""Parse the CLI value for the speculative config."""
return cls(**dict_value)
@staticmethod
def hf_config_override(hf_config: PretrainedConfig) -> PretrainedConfig:
if hf_config.model_type == "deepseek_v3":
hf_config.model_type = "deepseek_mtp"
if hf_config.model_type == "deepseek_mtp":
n_predict = getattr(hf_config, "num_nextn_predict_layers", None)
hf_config.update({
"n_predict": n_predict,
"architectures": ["DeepSeekMTPModel"]
})
return hf_config
def __post_init__(self):
# Note: "method" is a new parameter that helps to extend the
# configuration of non-model-based proposers, and the "model" parameter
# will be used to set the draft model, eagle head, or additional weight
# when needed. If users do not specify "method", the speculative method
# will be detected automatically if possible. If the speculative method
# can not be detected, it will be considered as the "draft_model" by
# default.
if self.model is None and self.num_speculative_tokens is not None:
# TODO(Shangming): Refactor mtp configuration logic when supporting
# mtp acceleration for more models besides deepseek_v3
if self.target_model_config and \
self.target_model_config.hf_text_config.model_type \
== "deepseek_v3":
# use the draft model from the same model:
self.model = self.target_model_config.model
elif self.method in ("ngram", "[ngram]"):
self.model = "ngram"
else:
raise ValueError("num_speculative_tokens was provided without "
"speculative model.")
# Automatically configure the method for ngram when "model" is used
# instead of "method"
if self.method is None and (self.model is not None
and self.model in ("ngram", "[ngram]")):
self.method = "ngram"
if self.method in ("ngram", "[ngram]"):
# Unified to "ngram" internally
self.method = "ngram"
# Set default values if not provided
if (self.prompt_lookup_min is None
and self.prompt_lookup_max is None):
# TODO(woosuk): Tune these values. They are arbitrarily chosen.
self.prompt_lookup_min = 5
self.prompt_lookup_max = 5
elif self.prompt_lookup_min is None:
assert self.prompt_lookup_max is not None
self.prompt_lookup_min = self.prompt_lookup_max
elif self.prompt_lookup_max is None:
assert self.prompt_lookup_min is not None
self.prompt_lookup_max = self.prompt_lookup_min
# Validate values
if self.prompt_lookup_min < 1:
raise ValueError(
f"prompt_lookup_min={self.prompt_lookup_min} must be > 0")
if self.prompt_lookup_max < 1:
raise ValueError(
f"prompt_lookup_max={self.prompt_lookup_max} must be > 0")
if self.prompt_lookup_min > self.prompt_lookup_max:
raise ValueError(
f"prompt_lookup_min={self.prompt_lookup_min} must "
f"be <= prompt_lookup_max={self.prompt_lookup_max}")
# TODO: current we still need extract vocab_size from target model
# config, in future, we may try refactor it out, and set
# draft related config as None here.
self.draft_model_config = self.target_model_config
self.draft_parallel_config = self.target_parallel_config
else:
self.prompt_lookup_max = 0
self.prompt_lookup_min = 0
if self.model is not None:
self.draft_model_config = ModelConfig(
model=self.model,
task="draft",
tokenizer=self.target_model_config.tokenizer,
tokenizer_mode=self.target_model_config.tokenizer_mode,
trust_remote_code=self.target_model_config.
trust_remote_code,
allowed_local_media_path=self.target_model_config.
allowed_local_media_path,
dtype=self.target_model_config.dtype,
seed=self.target_model_config.seed,
revision=self.revision,
code_revision=self.code_revision,
tokenizer_revision=self.target_model_config.
tokenizer_revision,
spec_target_max_model_len=self.target_model_config.
max_model_len,
quantization=self.quantization,
enforce_eager=self.target_model_config.enforce_eager,
max_seq_len_to_capture=self.target_model_config.
max_seq_len_to_capture,
max_logprobs=self.target_model_config.max_logprobs,
hf_overrides=SpeculativeConfig.hf_config_override,
)
# Automatically detect the method
if self.method in ('eagle', 'eagle3'):
pass
elif "eagle-" in self.draft_model_config.model.lower() or \
"eagle3-" in self.draft_model_config.model.lower():
self.method = "eagle"
elif self.draft_model_config.hf_config.model_type == "medusa":
self.method = "medusa"
elif (self.draft_model_config.hf_config.model_type ==
"mlp_speculator"):
self.method = "mlp_speculator"
else:
self.method = "draft_model"
# Replace hf_config for EAGLE draft_model
if self.method in ("eagle", "eagle3"):
if self.enable_chunked_prefill and not envs.VLLM_USE_V1:
raise ValueError(
"Chunked prefill and EAGLE are not compatible "
"when using V0.")
from vllm.transformers_utils.configs.eagle import (
EAGLEConfig)
if isinstance(self.draft_model_config.hf_config,
EAGLEConfig):
pass
else:
eagle_config = EAGLEConfig(
self.draft_model_config.hf_config,
method=self.method)
self.draft_model_config.hf_config = eagle_config
if (self.num_speculative_tokens is not None
and hasattr(self.draft_model_config.hf_config,
"num_lookahead_tokens")):
self.draft_model_config.hf_config.num_lookahead_tokens = \
self.num_speculative_tokens
n_predict = getattr(self.draft_model_config.hf_config,
"n_predict", None)
if n_predict is not None:
if self.num_speculative_tokens is None:
# Default to max value defined in draft model config.
self.num_speculative_tokens = n_predict
elif self.num_speculative_tokens > n_predict and \
self.num_speculative_tokens % n_predict != 0:
# Ensure divisibility for MTP module reuse.
raise ValueError(
f"num_speculative_tokens:{self.num_speculative_tokens}"
f" must be divisible by {n_predict=}")
self.draft_tensor_parallel_size = \
SpeculativeConfig._verify_and_get_draft_tp(
self.target_parallel_config,
self.draft_tensor_parallel_size,
self.draft_model_config.hf_config
)
self.draft_model_config.max_model_len = (
SpeculativeConfig._maybe_override_draft_max_model_len(
self.max_model_len,
self.draft_model_config.max_model_len,
self.target_model_config.max_model_len,
))
self.draft_parallel_config = (
SpeculativeConfig.create_draft_parallel_config(
self.target_parallel_config,
self.draft_tensor_parallel_size))
if self.acceptance_method == "typical_acceptance_sampler":
if self.posterior_threshold is None:
self.posterior_threshold = 0.09
if self.posterior_alpha is None:
self.posterior_alpha = 0.3
self._verify_args()
@staticmethod
def _maybe_override_draft_max_model_len(
speculative_max_model_len: Optional[int],
draft_max_model_len: int,
target_max_model_len: int,
) -> int:
"""Determine the max sequence len for the draft model. This is usually
the draft_max_model_len, but may be the target_max_model_len if it is
less than the draft_max_model_len, or may be speculative_max_model_len
if it is specified.
This is necessary so that sequences do not exceed the capacity of the
draft model or the target model.
speculative_max_model_len is mainly used for testing that sequences can
skip speculation.
"""
if speculative_max_model_len is not None:
if speculative_max_model_len > draft_max_model_len:
raise ValueError(f"{speculative_max_model_len=} cannot be "
f"larger than {draft_max_model_len=}")
if speculative_max_model_len > target_max_model_len:
raise ValueError(f"{speculative_max_model_len=} cannot be "
f"larger than {target_max_model_len=}")
return speculative_max_model_len
return min(
draft_max_model_len,
target_max_model_len,
)
@staticmethod
def _verify_and_get_draft_tp(
target_parallel_config: ParallelConfig,
speculative_draft_tensor_parallel_size: Optional[int],
draft_hf_config: PretrainedConfig) -> int:
"""
Verifies and adjusts the tensor parallel size for a draft model
specified using speculative_draft_tensor_parallel_size.
"""
# If speculative_draft_tensor_parallel_size is unset then set it
# appropriately else verify that it is set correctly.
if speculative_draft_tensor_parallel_size is None:
if draft_hf_config.model_type == "mlp_speculator":
speculative_draft_tensor_parallel_size = 1
if target_parallel_config.tensor_parallel_size > 1:
logger.warning(
"%s cannot currently be run with tp>1; "
"setting speculative_draft_tensor_parallel_size=1",
draft_hf_config.model_type)
else:
speculative_draft_tensor_parallel_size = \
target_parallel_config.tensor_parallel_size
elif speculative_draft_tensor_parallel_size not in (
1, target_parallel_config.tensor_parallel_size):
raise ValueError(
f"{speculative_draft_tensor_parallel_size=} cannot be "
f"other value than 1 or target model tensor_parallel_size")
return speculative_draft_tensor_parallel_size
@staticmethod
def create_draft_parallel_config(
target_parallel_config: ParallelConfig,
speculative_draft_tensor_parallel_size: int,
) -> ParallelConfig:
"""Create a parallel config for use by the draft worker.
This is mostly a copy of the target parallel config, except the tp_size.
"""
draft_parallel_config = ParallelConfig(
pipeline_parallel_size=target_parallel_config.
pipeline_parallel_size,
tensor_parallel_size=speculative_draft_tensor_parallel_size,
distributed_executor_backend=target_parallel_config.
distributed_executor_backend,
max_parallel_loading_workers=target_parallel_config.
max_parallel_loading_workers,
disable_custom_all_reduce=target_parallel_config.
disable_custom_all_reduce,
ray_workers_use_nsight=target_parallel_config.
ray_workers_use_nsight,
placement_group=target_parallel_config.placement_group,
)
return draft_parallel_config
def _verify_args(self) -> None:
if self.num_speculative_tokens is None:
raise ValueError(
"num_speculative_tokens must be provided with "
"speculative model unless the draft model config contains an "
"n_predict parameter.")
if self.num_speculative_tokens <= 0:
raise ValueError("Expected num_speculative_tokens to be greater "
f"than zero ({self.num_speculative_tokens}).")
if self.draft_model_config:
self.draft_model_config.verify_with_parallel_config(
self.draft_parallel_config)
# Validate and set draft token acceptance related settings.
if self.acceptance_method is None:
raise ValueError("acceptance_method is not set. "
"Expected values are rejection_sampler or "
"typical_acceptance_sampler.")
if (self.acceptance_method != 'rejection_sampler'
and self.acceptance_method != 'typical_acceptance_sampler'):
raise ValueError(
"Expected acceptance_method to be either "
"rejection_sampler or typical_acceptance_sampler. Instead it "
f"is {self.acceptance_method}")
if self.acceptance_method == "typical_acceptance_sampler" and (
(self.posterior_threshold is not None
and self.posterior_threshold < 0) or
(self.posterior_alpha is not None and self.posterior_alpha < 0)):
raise ValueError(
"Expected the posterior_threshold and posterior_alpha of "
"typical_acceptance_sampler to be > 0. "
"Instead found posterior_threshold = "
f"{self.posterior_threshold} and posterior_alpha = "
f"{self.posterior_alpha}")
if (self.disable_by_batch_size is not None
and self.disable_by_batch_size < 2):
raise ValueError("Expect the batch size threshold of disabling "
"speculative decoding is > 1, but got "
f"{self.disable_by_batch_size=}")
if self.method == "eagle3" and self.target_model_config and \
"llama" not in self.target_model_config.hf_text_config.model_type:
raise ValueError(
"Eagle3 is only supported for Llama models. "
f"Got {self.target_model_config.hf_text_config.model_type=}")
@property
def num_lookahead_slots(self) -> int:
"""The number of additional slots the scheduler should allocate per
step, in addition to the slots allocated for each known token.
This is equal to the number of speculative tokens, as each speculative
token must be scored.
"""
return self.num_speculative_tokens
def use_eagle(self) -> bool:
return self.method in ("eagle", "eagle3")
def __repr__(self) -> str:
method = self.method
model = None if method == "ngram" else self.draft_model_config.model
num_spec_tokens = self.num_speculative_tokens
return f"SpeculativeConfig({method=}, {model=}, {num_spec_tokens=})"
LoRADType = Literal["auto", "float16", "bfloat16"]
@config
@dataclass
class LoRAConfig:
"""Configuration for LoRA."""
max_lora_rank: int = 16
"""Max LoRA rank."""
max_loras: int = 1
"""Max number of LoRAs in a single batch."""
fully_sharded_loras: bool = False
"""By default, only half of the LoRA computation is sharded with tensor
parallelism. Enabling this will use the fully sharded layers. At high
sequence length, max rank or tensor parallel size, this is likely faster.
"""
max_cpu_loras: Optional[int] = None
"""Maximum number of LoRAs to store in CPU memory. Must be >= than
`max_loras`."""
lora_dtype: Union[torch.dtype, LoRADType] = "auto"
"""Data type for LoRA. If auto, will default to base model dtype."""
lora_extra_vocab_size: int = 256
"""Maximum size of extra vocabulary that can be present in a LoRA adapter
(added to the base model vocabulary)."""
# This is a constant.
lora_vocab_padding_size: ClassVar[int] = 256
long_lora_scaling_factors: Optional[tuple[float, ...]] = None
"""Specify multiple scaling factors (which can be different from base model
scaling factor - see eg. Long LoRA) to allow for multiple LoRA adapters
trained with those scaling factors to be used at the same time. If not
specified, only adapters trained with the base model scaling factor are
allowed."""
bias_enabled: bool = False
"""Enable bias for LoRA adapters."""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
factors: list[Any] = []
factors.append(self.max_lora_rank)
factors.append(self.max_loras)
factors.append(self.fully_sharded_loras)
factors.append(self.lora_dtype)
factors.append(self.lora_extra_vocab_size)
factors.append(self.long_lora_scaling_factors)
factors.append(self.bias_enabled)
hash_str = hashlib.md5(str(factors).encode(),
usedforsecurity=False).hexdigest()
return hash_str
def __post_init__(self):
# Setting the maximum rank to 512 should be able to satisfy the vast
# majority of applications.
possible_max_ranks = (8, 16, 32, 64, 128, 256, 320, 512)
possible_lora_extra_vocab_size = (256, 512)
if self.max_lora_rank not in possible_max_ranks:
raise ValueError(
f"max_lora_rank ({self.max_lora_rank}) must be one of "
f"{possible_max_ranks}.")
if self.lora_extra_vocab_size not in possible_lora_extra_vocab_size:
raise ValueError(
f"lora_extra_vocab_size ({self.lora_extra_vocab_size}) "
f"must be one of {possible_lora_extra_vocab_size}.")
if self.max_loras < 1:
raise ValueError(f"max_loras ({self.max_loras}) must be >= 1.")
if self.max_cpu_loras is None:
self.max_cpu_loras = self.max_loras
elif self.max_cpu_loras < self.max_loras:
raise ValueError(
f"max_cpu_loras ({self.max_cpu_loras}) must be >= "
f"max_loras ({self.max_loras})")
def verify_with_cache_config(self, cache_config: CacheConfig):
if cache_config.cpu_offload_gb > 0 and not envs.VLLM_USE_V1:
raise ValueError(
"V0 LoRA does not support CPU offload, please use V1.")
def verify_with_model_config(self, model_config: ModelConfig):
if self.lora_dtype in (None, "auto"):
self.lora_dtype = model_config.dtype
elif isinstance(self.lora_dtype, str):
self.lora_dtype = getattr(torch, self.lora_dtype)
def verify_lora_support(self):
if self.long_lora_scaling_factors is not None and envs.VLLM_USE_V1:
raise ValueError(
"V1 LoRA does not support long LoRA, please use V0.")
@config
@dataclass
class PromptAdapterConfig:
"""Configuration for PromptAdapters."""
max_prompt_adapters: int = 1
"""Max number of PromptAdapters in a batch."""
max_prompt_adapter_token: int = 0
"""Max number of PromptAdapters tokens."""
max_cpu_prompt_adapters: Optional[int] = None
"""Maximum number of PromptAdapters to store in CPU memory. Must be >= than
`max_prompt_adapters`."""
prompt_adapter_dtype: Union[torch.dtype, str] = "auto"
"""Data type for PromptAdapter. If auto, will default to base model dtype.
"""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
# no factors to consider.
# this config will not affect the computation graph.
factors: list[Any] = []
hash_str = hashlib.md5(str(factors).encode(),
usedforsecurity=False).hexdigest()
return hash_str
def __post_init__(self):
if self.max_prompt_adapters < 1:
raise ValueError(f"max_prompt_adapters "
f"({self.max_prompt_adapters}) must be >= 1.")
if self.max_prompt_adapter_token == 0:
raise ValueError("max_prompt_adapter_token must be set.")
if self.max_cpu_prompt_adapters is None:
self.max_cpu_prompt_adapters = self.max_prompt_adapters
def verify_with_model_config(self, model_config: ModelConfig):
if self.prompt_adapter_dtype == "auto":
self.prompt_adapter_dtype = model_config.dtype
elif isinstance(self.prompt_adapter_dtype, str):
self.prompt_adapter_dtype = getattr(torch,
self.prompt_adapter_dtype)
@config
@dataclass
class MultiModalConfig:
"""Controls the behavior of multimodal models."""
limit_per_prompt: dict[str, int] = get_field(ModelConfig,
"limit_mm_per_prompt")
"""
The maximum number of input items allowed per prompt for each modality.
This should be a JSON string that will be parsed into a dictionary.
Defaults to 1 (V0) or 999 (V1) for each modality.
For example, to allow up to 16 images and 2 videos per prompt:
`{"images": 16, "videos": 2}`
"""
mm_processor_kwargs: Optional[dict[str, object]] = None
"""
Overrides for the multi-modal processor obtained from
`transformers.AutoProcessor.from_pretrained`.
The available overrides depend on the model that is being run.
For example, for Phi-3-Vision:
`{"num_crops": 4}`.
"""
disable_mm_preprocessor_cache: bool = False
"""
If `True`, disable caching of the processed multi-modal inputs.
"""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
# no factors to consider.
# this config will not affect the computation graph.
factors: list[Any] = []
hash_str = hashlib.md5(str(factors).encode(),
usedforsecurity=False).hexdigest()
return hash_str
def get_limit_per_prompt(self, modality: str) -> int:
"""
Get the maximum number of input items allowed per prompt
for the given modality.
"""
return self.limit_per_prompt.get(
modality,
999 if envs.VLLM_USE_V1 else 1,
)
# TODO: Add configs to init vision tower or not.
@config
@dataclass
class PoolerConfig:
"""Controls the behavior of output pooling in pooling models."""
pooling_type: Optional[str] = None
"""
The pooling method of the pooling model. This should be a key in
:class:`vllm.model_executor.layers.pooler.PoolingType`.
"""
normalize: Optional[bool] = None
"""
Whether to normalize the pooled outputs. Usually, this should be set to
``True`` for embedding outputs.
"""
softmax: Optional[bool] = None
"""
Whether to apply softmax to the pooled outputs. Usually, this should be set
to ``True`` for classification outputs.
"""
step_tag_id: Optional[int] = None
"""
If set, only the score corresponding to the ``step_tag_id`` in the
generated sentence should be returned. Otherwise, the scores for all tokens
are returned.
"""
returned_token_ids: Optional[list[int]] = None
"""
A list of indices for the vocabulary dimensions to be extracted,
such as the token IDs of ``good_token`` and ``bad_token`` in the
``math-shepherd-mistral-7b-prm`` model.
"""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
# no factors to consider.
# this config will not affect the computation graph.
factors: list[Any] = []
hash_str = hashlib.md5(str(factors).encode(),
usedforsecurity=False).hexdigest()
return hash_str
_STR_DTYPE_TO_TORCH_DTYPE = {
"half": torch.float16,
"float16": torch.float16,
"float": torch.float32,
"float32": torch.float32,
"bfloat16": torch.bfloat16,
}
_ROCM_NOT_SUPPORTED_DTYPE: list[str] = [] #
def _get_and_verify_dtype(
config: PretrainedConfig,
dtype: Union[str, torch.dtype],
) -> torch.dtype:
# NOTE: getattr(config, "torch_dtype", torch.float32) is not correct
# because config.torch_dtype can be None.
config_dtype = getattr(config.get_text_config(), "torch_dtype", None)
# Fallback for multi-modal models if the root config
# does not define torch_dtype
if config_dtype is None and hasattr(config, "vision_config"):
config_dtype = getattr(config.vision_config, "torch_dtype", None)
if config_dtype is None:
config_dtype = torch.float32
if isinstance(dtype, str):
dtype = dtype.lower()
if dtype == "auto":
if config_dtype == torch.float32:
# Following common practice, we use float16 for float32 models
torch_dtype = torch.float16
else:
torch_dtype = config_dtype
if config.model_type == "plamo2":
logger.info(
"For PLaMo2, we cast models to bfloat16 instead of using "
"float16 by default. This is because float16 does not work."
)
torch_dtype = torch.bfloat16
from vllm.platforms import current_platform
if (current_platform.is_cpu()
and current_platform.get_cpu_architecture()
== CpuArchEnum.POWERPC
and (config_dtype == torch.float16
or config_dtype == torch.float32)):
logger.info(
"For POWERPC, we cast models to bfloat16 instead of "
"using float16 by default. Float16 is not currently "
"supported for POWERPC.")
torch_dtype = torch.bfloat16
# TODO: change this condition to check if the platform support bf16
# instead of checking the OS. For instance M2 shall supports bf16
# already. But we need to modify `cpu_extension.cmake` to activate
# the feature in the build.
if (current_platform.is_cpu() and sys.platform.startswith("darwin")
and current_platform.get_cpu_architecture()
== CpuArchEnum.ARM and config_dtype == torch.bfloat16):
logger.info("For macOS with Apple Silicon, currently bfloat16 "
"is not supported. Setting dtype to float16.")
torch_dtype = torch.float16
if current_platform.is_hpu() and config_dtype == torch.float16:
logger.info(
"For HPU, we cast models to bfloat16 instead of "
"using float16 by default. Please specify `dtype` if you "
"want to use float16.")
torch_dtype = torch.bfloat16
elif dtype == "float16" and config.model_type == "plamo2":
logger.warning(
"For PLaMo2, using float16 is unstable and might cause "
"unexpected behavior. Please use bfloat16 or float32 instead.")
torch_dtype = torch.float16
else:
if dtype not in _STR_DTYPE_TO_TORCH_DTYPE:
raise ValueError(f"Unknown dtype: {dtype}")
torch_dtype = _STR_DTYPE_TO_TORCH_DTYPE[dtype]
elif isinstance(dtype, torch.dtype):
torch_dtype = dtype
else:
raise ValueError(f"Unknown dtype: {dtype}")
# Verify the dtype.
if torch_dtype != config_dtype:
if torch_dtype == torch.float32:
# Upcasting to float32 is allowed.
logger.info("Upcasting %s to %s.", config_dtype, torch_dtype)
pass
elif config_dtype == torch.float32:
# Downcasting from float32 to float16 or bfloat16 is allowed.
logger.info("Downcasting %s to %s.", config_dtype, torch_dtype)
pass
else:
# Casting between float16 and bfloat16 is allowed with a warning.
logger.warning("Casting %s to %s.", config_dtype, torch_dtype)
return torch_dtype
def _get_and_verify_max_len(
hf_config: PretrainedConfig,
max_model_len: Optional[int],
disable_sliding_window: bool,
sliding_window_len: Optional[Union[int, list[Optional[int]]]],
spec_target_max_model_len: Optional[int] = None,
encoder_config: Optional[Any] = None,
) -> int:
"""Get and verify the model's maximum length."""
derived_max_model_len = float("inf")
possible_keys = [
# OPT
"max_position_embeddings",
# GPT-2
"n_positions",
# MPT
"max_seq_len",
# ChatGLM2
"seq_length",
# Command-R
"model_max_length",
# Whisper
"max_target_positions",
# Others
"max_sequence_length",
"max_seq_length",
"seq_len",
]
# Choose the smallest "max_length" from the possible keys.
max_len_key = None
for key in possible_keys:
max_len = getattr(hf_config, key, None)
if max_len is not None:
max_len_key = key if max_len < derived_max_model_len \
else max_len_key
derived_max_model_len = min(derived_max_model_len, max_len)
# For Command-R / Cohere, Cohere2 / Aya Vision models
if tmp_max_len := getattr(hf_config, "model_max_length", None):
max_len_key = "model_max_length"
derived_max_model_len = tmp_max_len
# If sliding window is manually disabled, max_length should be less
# than the sliding window length in the model config.
if disable_sliding_window and sliding_window_len is not None:
sliding_window_len_min = get_min_sliding_window(sliding_window_len)
max_len_key = "sliding_window" \
if sliding_window_len_min < derived_max_model_len else max_len_key
derived_max_model_len = min(derived_max_model_len,
sliding_window_len_min)
# If none of the keys were found in the config, use a default and
# log a warning.
if derived_max_model_len == float("inf"):
if max_model_len is not None:
# If max_model_len is specified, we use it.
return max_model_len
if spec_target_max_model_len is not None:
# If this is a speculative draft model, we use the max model len
# from the target model.
return spec_target_max_model_len
default_max_len = 2048
logger.warning(
"The model's config.json does not contain any of the following "
"keys to determine the original maximum length of the model: "
"%s. Assuming the model's maximum length is %d.", possible_keys,
default_max_len)
derived_max_model_len = default_max_len
rope_scaling = getattr(hf_config, "rope_scaling", None)
# NOTE(woosuk): Gemma3's max_model_len (128K) is already scaled by RoPE
# scaling, so we skip applying the scaling factor again.
if rope_scaling is not None and "gemma3" not in hf_config.model_type:
# No need to consider "type" key because of patch_rope_scaling when
# loading HF config
rope_type = rope_scaling["rope_type"]
if rope_type not in ("su", "longrope", "llama3"):
if disable_sliding_window:
# TODO(robertgshaw): Find a model that supports rope_scaling
# with sliding window to see if this case should be allowed.
raise NotImplementedError(
"Disabling sliding window is not supported for models "
"with rope_scaling. Please raise an issue so we can "
"investigate.")
# NOTE: rope_type == "default" does not define factor
# https://github.com/huggingface/transformers/blob/v4.45.2/src/transformers/modeling_rope_utils.py
scaling_factor = rope_scaling.get("factor", 1.0)
if rope_type == "yarn":
derived_max_model_len = rope_scaling[
"original_max_position_embeddings"]
derived_max_model_len *= scaling_factor
if encoder_config and "max_seq_length" in encoder_config:
derived_max_model_len = encoder_config["max_seq_length"]
# If the user specified a max length, make sure it is smaller than the
# derived length from the HF model config.
if max_model_len is None:
max_model_len = int(derived_max_model_len)
elif max_model_len > derived_max_model_len:
# Some models might have a separate key for specifying model_max_length
# that will be bigger than derived_max_model_len. We compare user input
# with model_max_length and allow this override when it's smaller.
model_max_length = getattr(hf_config, "model_max_length", None)
if model_max_length is not None and max_model_len <= model_max_length:
if disable_sliding_window:
# TODO(robertgshaw): Find a model that has model_max_length
# with sliding window to see if this case should be allowed.
raise NotImplementedError(
"Disabling sliding window is not supported for models "
"model_max_length in the config. Please raise an issue "
"so we can investigate.")
else:
msg = (
f"User-specified max_model_len ({max_model_len}) is greater "
f"than the derived max_model_len ({max_len_key}="
f"{derived_max_model_len} or model_max_length="
f"{model_max_length} in model's config.json). This may lead "
"to incorrect model outputs or CUDA errors.")
if envs.VLLM_ALLOW_LONG_MAX_MODEL_LEN:
logger.warning(
"%s Make sure the value is correct and within the "
"model context size.", msg)
else:
raise ValueError(
f"{msg} To allow overriding this maximum, set "
"the env var VLLM_ALLOW_LONG_MAX_MODEL_LEN=1")
return int(max_model_len)
def get_min_sliding_window(
sliding_window: Union[int, list[Optional[int]]]) -> int:
if isinstance(sliding_window, list):
return min(s for s in sliding_window if s is not None)
return sliding_window
def get_served_model_name(model: str,
served_model_name: Optional[Union[str, list[str]]]):
"""
If the input is a non-empty list, the first model_name in
`served_model_name` is taken.
If the input is a non-empty string, it is used directly.
For cases where the input is either an empty string or an
empty list, the fallback is to use `self.model`.
"""
if not served_model_name:
return model
if isinstance(served_model_name, list):
return served_model_name[0]
return served_model_name
GuidedDecodingBackendV0 = Literal["auto", "outlines", "lm-format-enforcer",
"xgrammar", "guidance"]
GuidedDecodingBackendV1 = Literal["auto", "xgrammar", "guidance"]
GuidedDecodingBackend = Literal[GuidedDecodingBackendV0,
GuidedDecodingBackendV1]
@config
@dataclass
class DecodingConfig:
"""Dataclass which contains the decoding strategy of the engine."""
@property
@deprecated(
"`guided_decoding_backend` is deprecated and has been renamed to "
"`backend`. This will be removed in v0.10.0. Please use the "
"`backend` argument instead.")
def guided_decoding_backend(self) -> GuidedDecodingBackend:
return self.backend
@guided_decoding_backend.setter
def guided_decoding_backend(self, value: GuidedDecodingBackend):
self.backend = value
backend: GuidedDecodingBackend = "auto" if envs.VLLM_USE_V1 else "xgrammar"
"""Which engine will be used for guided decoding (JSON schema / regex etc)
by default. With "auto", we will make opinionated choices based on request
contents and what the backend libraries currently support, so the behavior
is subject to change in each release."""
disable_fallback: bool = False
"""If `True`, vLLM will not fallback to a different backend on error."""
disable_any_whitespace: bool = False
"""If `True`, the model will not generate any whitespace during guided
decoding. This is only supported for xgrammar and guidance backends."""
disable_additional_properties: bool = False
"""If `True`, the `guidance` backend will not use `additionalProperties`
in the JSON schema. This is only supported for the `guidance` backend and
is used to better align its behaviour with `outlines` and `xgrammar`."""
reasoning_backend: str = ""
"""Select the reasoning parser depending on the model that you're using.
This is used to parse the reasoning content into OpenAI API format."""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
# no factors to consider.
# this config will not affect the computation graph.
factors: list[Any] = []
hash_str = hashlib.md5(str(factors).encode(),
usedforsecurity=False).hexdigest()
return hash_str
def __post_init__(self):
if ":" in self.backend:
self._extract_backend_options()
if envs.VLLM_USE_V1:
valid_guided_backends = get_args(GuidedDecodingBackendV1)
else:
valid_guided_backends = get_args(GuidedDecodingBackendV0)
if self.backend not in valid_guided_backends:
raise ValueError(f"Invalid backend '{self.backend}',"
f" must be one of {valid_guided_backends}")
if (self.disable_any_whitespace
and self.backend not in ("xgrammar", "guidance")):
raise ValueError("disable_any_whitespace is only supported for "
"xgrammar and guidance backends.")
if (self.disable_additional_properties and self.backend != "guidance"):
raise ValueError("disable_additional_properties is only supported "
"for the guidance backend.")
@deprecated(
"Passing guided decoding backend options inside backend in the format "
"'backend:...' is deprecated. This will be removed in v0.10.0. Please "
"use the dedicated arguments '--disable-fallback', "
"'--disable-any-whitespace' and '--disable-additional-properties' "
"instead.")
def _extract_backend_options(self):
"""Extract backend options from the backend string."""
backend, options = self.backend.split(":")
self.backend = cast(GuidedDecodingBackend, backend)
options_set = set(options.strip().split(","))
if "no-fallback" in options_set:
self.disable_fallback = True
if "disable-any-whitespace" in options_set:
self.disable_any_whitespace = True
if "no-additional-properties" in options_set:
self.disable_additional_properties = True
DetailedTraceModules = Literal["model", "worker", "all"]
@config
@dataclass
class ObservabilityConfig:
"""Configuration for observability - metrics and tracing."""
show_hidden_metrics_for_version: Optional[str] = None
"""Enable deprecated Prometheus metrics that have been hidden since the
specified version. For example, if a previously deprecated metric has been
hidden since the v0.7.0 release, you use
`--show-hidden-metrics-for-version=0.7` as a temporary escape hatch while
you migrate to new metrics. The metric is likely to be removed completely
in an upcoming release."""
@cached_property
def show_hidden_metrics(self) -> bool:
"""Check if the hidden metrics should be shown."""
if self.show_hidden_metrics_for_version is None:
return False
return version._prev_minor_version_was(
self.show_hidden_metrics_for_version)
otlp_traces_endpoint: Optional[str] = None
"""Target URL to which OpenTelemetry traces will be sent."""
collect_detailed_traces: Optional[list[DetailedTraceModules]] = None
"""It makes sense to set this only if `--otlp-traces-endpoint` is set. If
set, it will collect detailed traces for the specified modules. This
involves use of possibly costly and or blocking operations and hence might
have a performance impact.
Note that collecting detailed timing information for each request can be
expensive."""
@cached_property
def collect_model_forward_time(self) -> bool:
"""Whether to collect model forward time for the request."""
return (self.collect_detailed_traces is not None
and ("model" in self.collect_detailed_traces
or "all" in self.collect_detailed_traces))
@cached_property
def collect_model_execute_time(self) -> bool:
"""Whether to collect model execute time for the request."""
return (self.collect_detailed_traces is not None
and ("worker" in self.collect_detailed_traces
or "all" in self.collect_detailed_traces))
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
# no factors to consider.
# this config will not affect the computation graph.
factors: list[Any] = []
hash_str = hashlib.md5(str(factors).encode(),
usedforsecurity=False).hexdigest()
return hash_str
def __post_init__(self):
if (self.collect_detailed_traces is not None
and len(self.collect_detailed_traces) == 1
and "," in self.collect_detailed_traces[0]):
self._parse_collect_detailed_traces()
if not is_otel_available() and self.otlp_traces_endpoint is not None:
raise ValueError(
"OpenTelemetry is not available. Unable to configure "
"'otlp_traces_endpoint'. Ensure OpenTelemetry packages are "
f"installed. Original error:\n{otel_import_error_traceback}")
def _parse_collect_detailed_traces(self):
assert isinstance(self.collect_detailed_traces, list)
self.collect_detailed_traces = cast(
list[DetailedTraceModules],
self.collect_detailed_traces[0].split(","))
class KVTransferConfig(BaseModel):
"""Configuration for distributed KV cache transfer."""
# The KV connector for vLLM to transmit KV caches between vLLM instances.
kv_connector: Optional[str] = None
# The device used by kv connector to buffer the KV cache.
# Currently only support 'cuda'.
kv_buffer_device: Optional[str] = "cuda"
# The buffer size for TorchDistributedConnector. Measured in number of
# bytes. Recommended value: 1e9 (about 1GB).
kv_buffer_size: float = 1e9
# Whether this vLLM instance produces, consumes KV cache, or both. Choices
# are 'kv_producer', 'kv_consumer', and 'both'.
kv_role: Optional[str] = None
# The rank of this vLLM instance in the KV cache transfer. Typical value:
# 0 for prefill instance, 1 for decode instance.
# Currently only 1P1D is supported.
kv_rank: Optional[int] = None
# The number of parallel instances for KV cache transfer. For
# PyNcclConnector, this should be 2.
kv_parallel_size: int = 1
# The KV connector ip, used to build distributed connection
kv_ip: str = "127.0.0.1"
# The KV connector port, used to build distributed connection
kv_port: int = 14579
# any extra config that the connector may need
kv_connector_extra_config: dict[str, Any] = {}
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
# no factors to consider.
# this config will not affect the computation graph.
factors: list[Any] = []
hash_str = hashlib.md5(str(factors).encode(),
usedforsecurity=False).hexdigest()
return hash_str
@classmethod
def from_cli(cls, cli_value: str) -> "KVTransferConfig":
"""Parse the CLI value for the kv cache transfer config."""
return KVTransferConfig.model_validate_json(cli_value)
def model_post_init(self, __context: Any) -> None:
if self.kv_role is not None and self.kv_role not in [
"kv_producer", "kv_consumer", "kv_both"
]:
raise ValueError(
f"Unsupported kv_role: {self.kv_role}. "
f"Supported roles are `kv_producer`, `kv_consumer`, "
f"and `kv_both`")
if self.kv_connector is not None and self.kv_role is None:
raise ValueError("Please specify kv_disagg_role when kv_connector "
"is set, supported roles are `kv_producer`, "
"`kv_consumer`, and `kv_both`")
@property
def is_kv_transfer_instance(self) -> bool:
return self.kv_connector is not None and \
self.kv_role in ["kv_producer", "kv_consumer", "kv_both"]
@property
def is_kv_producer(self) -> bool:
return self.kv_connector is not None and \
self.kv_role in ["kv_producer", "kv_both"]
@property
def is_kv_consumer(self) -> bool:
return self.kv_connector is not None and \
self.kv_role in ["kv_consumer", "kv_both"]
def get_from_extra_config(self, key, default) -> Any:
return self.kv_connector_extra_config.get(key, default)
class KVEventsConfig(BaseModel):
"""Configuration for KV event publishing."""
enable_kv_cache_events: bool = False
"""If True, enable KV cache events for tracking block storage and removal.
Events can be published externally by zmq using the event publisher config.
"""
publisher: str = "null"
"""The publisher to use for publishing kv events. Can be "null", "zmq".
"""
endpoint: str = "tcp://*:5557"
"""The zmq endpoint to use for publishing kv events.
"""
replay_endpoint: Optional[str] = None
"""The zmq endpoint to use for replaying kv events.
"""
buffer_steps: int = 10_000
"""The number of steps to cache for replay endpoint. Will only save
events from the last N steps for the replay endpoint.
"""
hwm: int = 100_000
"""The zmq high water mark for the event publisher. After queueing N events,
events will start dropping if the consumer is not keeping up.
"""
max_queue_size: int = 100_000
"""The maximum number of events to queue while waiting for publishing.
"""
topic: str = ""
"""The topic to use for the event publisher. Consumers can subscribe to
this topic to receive events.
"""
@classmethod
def from_cli(cls, cli_value: str) -> "KVEventsConfig":
"""Parse the CLI value for the event publisher config."""
return KVEventsConfig.model_validate_json(cli_value)
class CompilationLevel:
# constants for the levels of the compilation process
NO_COMPILATION = 0
DYNAMO_AS_IS = 1
DYNAMO_ONCE = 2
PIECEWISE = 3
class CompilationConfig(BaseModel):
"""
Configuration for compilation.
It has three parts:
- Top-level Compilation control:
- level: the level of compilation.
- 0: no compilation.
- 1: dynamo as is.
- 2: dynamo once.
- 3: piecewise compilation.
- debug_dump_path: the path to dump the debug information.
- cache_dir: the directory to store the compiled graph, to
accelerate Inductor compilation. By default, it will use
model-related information to generate a cache directory.
- backend: the backend for compilation. It needs to be a string.
- "" (empty string): use the default backend.
- "eager"/"openxla"/...: use the specified backend registered in PyTorch.
- "full.module.name": a qualified name which can be used to import the backend function.
We use string to avoid serialization issues when using compilation in a distributed setting.
When the compilation level is 1 or 2, the backend is used for the compilation directly (it sees the whole graph).
When the compilation level is 3, the backend is used for the piecewise compilation (it sees a part of the graph).
- custom_ops: fine-grained control over which custom ops to enable/disable.
Use 'all' to enable all, 'none' to disable all.
Also specify a list of custom op names to enable (prefixed with a '+'),
or disable (prefixed with a '-').
Examples:
- 'all,-op1' to enable all except op1
- 'none,+op1,+op2' to enable only op1 and op2
By default, all custom ops are enabled when running without Inductor
and disabled when running with Inductor (compile_level >= Inductor).
- splitting_ops: a list of ops to split the full graph into subgraphs, used in piecewise compilation.
- CudaGraph capture:
- use_cudagraph: whether to use cudagraph inside compilation.
- False: cudagraph inside compilation is not used.
- True: cudagraph inside compilation is used. It requires
that all input buffers have fixed addresses, and all
splitting ops write their outputs to input buffers.
Note that this is orthogonal to the cudagraph capture logic
outside of compilation.
TODO: move outside cudagraph logic into compilation.
torch.compile will handle cudagraph capture logic in the future.
- cudagraph_capture_sizes: sizes to capture cudagraph.
- None (default): capture sizes are inferred from vllm config.
- list[int]: capture sizes are specified as given.
- cudagraph_num_of_warmups: number of warmup runs for cudagraph.
It means the first several runs will be treated as warmup runs.
Only after that, the execution will be recorded, and the recorded
cudagraph will be used for subsequent runs.
- cudagraph_copy_inputs: whether to copy input tensors for
cudagraph. If the caller can guarantee that the same input buffers
are always used, it can set this to False. Otherwise, it should
set this to True, and the compiler will copy the input to an
internally managed buffer. Default is False.
- Inductor compilation:
- use_inductor: whether to use inductor compilation.
- False: inductor compilation is not used. graph runs in eager.
- True: inductor compilation is used. one graph for symbolic shape
is compiled. In addition, compile for compile_sizes,
using configurations in inductor_compile_config.
- compile_sizes: sizes to compile for inductor. In addition
to integers, it also supports "cudagraph_capture_sizes" to
specify the sizes for cudagraph capture.
- inductor_compile_config: additional configurations for inductor.
- None: use default configurations.
- inductor_passes: additional passes for inductor. It is a dictionary
from pass name to pass function qualified name. We use function
name because the config uses json format. If we pass the config
from Python, functions can also be passed directly via Python object
constructor, e.g. `CompilationConfig(inductor_passes={"a": func})`
- custom inductor passes: see PassConfig for more details
Why we have different sizes for cudagraph and inductor:
- cudagraph: a cudagraph captured for a specific size can only be used
for the same size. We need to capture all the sizes we want to use.
- inductor: a graph compiled by inductor for a general shape can be used
for different sizes. Inductor can also compile for specific sizes,
where it can have more information to optimize the graph with fully
static shapes. However, we find the general shape compilation is
sufficient for most cases. It might be beneficial to compile for
certain small batchsizes, where inductor is good at optimizing.
""" # noqa
level: int = 0
debug_dump_path: str = ""
cache_dir: str = ""
backend: str = ""
custom_ops: list[str] = Field(default_factory=list)
splitting_ops: list[str] = Field(default=None) # type: ignore
use_inductor: bool = True
compile_sizes: Optional[list[Union[int, str]]] = Field(default=None)
inductor_compile_config: dict = Field(default_factory=dict)
inductor_passes: dict[str, str] = Field(default_factory=dict)
use_cudagraph: bool = False
cudagraph_num_of_warmups: int = 0
cudagraph_capture_sizes: Optional[list[int]] = None
cudagraph_copy_inputs: bool = False
class PassConfig(BaseModel):
"""
Configuration for custom Inductor passes.
This is separate from general CompilationConfig so that inductor passes
don't all have access to full configuration - that would create a cycle
as the PassManager is set as a property of config.
- dump_graph_stages: list of stages for which we want to dump the graph.
Each pass defines its own stages (before, after, maybe in-between).
- dump_graph_dir: directory to dump the graphs. Default is .
- enable_fusion: whether to enable the custom fusion pass.
- enable_noop: whether to enable the custom no-op elimination pass.
TODO(luka) better pass enabling system.
- enable_sequence_parallelism: whether to enable sequence parallelism.
"""
dump_graph_stages: list[str] = Field(default_factory=list)
dump_graph_dir: Path = Field(default=Path("."))
enable_fusion: bool = True
enable_noop: bool = True
enable_sequence_parallelism: bool = False
def uuid(self):
"""
Produces a hash unique to the pass configuration.
Any new fields that affect compilation should be added to the hash.
Do not include dump_graph_* in the hash - they don't affect
compilation.
"""
dict_ = self.model_dump(include={"enable_fusion", "enable_noop", \
"enable_sequence_parallelism"})
return InductorPass.hash_dict(dict_)
def model_post_init(self, __context: Any) -> None:
if not self.enable_noop and self.enable_fusion:
logger.warning_once(
"Fusion enabled but reshape elimination disabled. "
"RMSNorm + quant (fp8) fusion might not work")
pass_config: PassConfig = Field(default_factory=PassConfig)
# not configurable, computed after init
max_capture_size: int = PrivateAttr
local_cache_dir: str = PrivateAttr # local cache dir for each rank
# optimization:
# Intuitively, bs_to_padded_graph_size should be dict[int, int].
# since we know all keys are in a range [0, max_capture_size],
# we can optimize it to list[int] for better lookup performance.
bs_to_padded_graph_size: list[int] = PrivateAttr
# keep track of enabled and disabled custom ops
enabled_custom_ops: Counter[str] = PrivateAttr
disabled_custom_ops: Counter[str] = PrivateAttr
traced_files: set[str] = PrivateAttr
compilation_time: float = PrivateAttr
# Per-model forward context
# Map from layer name to layer objects that need to be accessed outside
# model code, e.g., Attention, FusedMOE when dp_size>1.
static_forward_context: dict[str, Any] = PrivateAttr
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
factors: list[Any] = []
factors.append(self.level)
factors.append(self.backend)
factors.append(self.custom_ops)
factors.append(self.splitting_ops)
factors.append(self.use_inductor)
factors.append(self.inductor_compile_config)
factors.append(self.inductor_passes)
factors.append(self.pass_config.uuid())
return hashlib.sha256(str(factors).encode()).hexdigest()
def __repr__(self) -> str:
exclude = {
"static_forward_context",
"enabled_custom_ops",
"disabled_custom_ops",
"compilation_time",
"bs_to_padded_graph_size",
"pass_config",
"traced_files",
}
return self.model_dump_json(exclude=exclude, exclude_unset=True)
__str__ = __repr__
@classmethod
def from_cli(cls, cli_value: str) -> "CompilationConfig":
"""Parse the CLI value for the compilation config."""
if cli_value in ["0", "1", "2", "3"]:
return cls(level=int(cli_value))
# do not use `eval`, it is dangerous and can execute arbitrary code
dict_value = ast.literal_eval(cli_value)
return CompilationConfig.model_validate(dict_value)
def model_post_init(self, __context: Any) -> None:
count_none = self.custom_ops.count("none")
count_all = self.custom_ops.count("all")
assert count_none + count_all <= 1, "Can only specify 'none' or 'all'"
# TODO(zou3519/luka): There are 2 issues with auto-functionalization V2:
# 1. A bug in PyTorch, fixed in 2.7:
# https://github.com/pytorch/pytorch/issues/147924
# 2. Custom passes (fusion) rely on auto-functionalization V1 and don't
# work with V2. Addressing this will take extra engineering effort
# and it is not yet a priority. RFC here:
# https://github.com/vllm-project/vllm/issues/14703
if is_torch_equal_or_newer("2.6"):
KEY = 'enable_auto_functionalized_v2'
if KEY not in self.inductor_compile_config:
self.inductor_compile_config[KEY] = False
if self.splitting_ops is None:
self.splitting_ops = []
for k, v in self.inductor_passes.items():
if not isinstance(v, str):
assert callable(v), (
f"pass {k} should be callable or a qualified name")
self.inductor_compile_config[k] = v if isinstance(
v, InductorPass) else CallableInductorPass(v)
continue
# resolve function from qualified name
names = v.split(".")
module = ".".join(names[:-1])
func_name = names[-1]
func = __import__(module).__dict__[func_name]
self.inductor_compile_config[k] = func if isinstance(
func, InductorPass) else CallableInductorPass(func)
self.enabled_custom_ops = Counter()
self.disabled_custom_ops = Counter()
self.traced_files = set()
self.static_forward_context = {}
self.compilation_time = 0.0
def init_backend(self, vllm_config: "VllmConfig") -> Union[str, Callable]:
if self.level == CompilationLevel.NO_COMPILATION:
raise ValueError("No compilation level is set.")
from torch._dynamo.backends.registry import list_backends
torch_backends = list_backends(exclude_tags=tuple())
if self.level in [
CompilationLevel.DYNAMO_AS_IS, CompilationLevel.DYNAMO_ONCE
]:
if self.backend == "":
return "eager"
if self.backend in torch_backends:
return self.backend
return resolve_obj_by_qualname(self.backend)
# TODO: pass user-specified backend to piecewise compilation
# merge with the config use_inductor
assert self.level == CompilationLevel.PIECEWISE
from vllm.compilation.backends import VllmBackend
return VllmBackend(vllm_config)
def init_with_cudagraph_sizes(self,
cudagraph_capture_sizes: list[int]) -> None:
"""To complete the initialization of config,
we need to know the cudagraph sizes."""
if self.cudagraph_capture_sizes is None:
self.cudagraph_capture_sizes = cudagraph_capture_sizes
else:
# de-duplicate the sizes provided by the config
self.cudagraph_capture_sizes = list(
set(self.cudagraph_capture_sizes))
logger.info(("cudagraph sizes specified by model runner"
" %s is overridden by config %s"),
cudagraph_capture_sizes, self.cudagraph_capture_sizes)
computed_compile_sizes = []
if self.compile_sizes is not None:
# de-duplicate the sizes provided by the config
self.compile_sizes = list(set(self.compile_sizes))
for x in self.compile_sizes:
if isinstance(x, str):
assert x == "cudagraph_capture_sizes", \
"Unrecognized size type in compile_sizes, " \
f"expect 'cudagraph_capture_sizes', got {x}"
computed_compile_sizes.extend(self.cudagraph_capture_sizes)
else:
assert isinstance(x, int)
computed_compile_sizes.append(x)
self.compile_sizes = computed_compile_sizes # type: ignore
# sort to make sure cudagraph capture sizes are in descending order
self.cudagraph_capture_sizes.sort(reverse=True)
self.max_capture_size = self.cudagraph_capture_sizes[
0] if self.cudagraph_capture_sizes else 0
# pre-compute the mapping from batch size to padded graph size
self.bs_to_padded_graph_size = [
0 for i in range(self.max_capture_size + 1)
]
for end, start in zip(self.cudagraph_capture_sizes,
self.cudagraph_capture_sizes[1:] + [0]):
for bs in range(start, end):
if bs == start:
self.bs_to_padded_graph_size[bs] = start
else:
self.bs_to_padded_graph_size[bs] = end
self.bs_to_padded_graph_size[
self.max_capture_size] = self.max_capture_size
def set_splitting_ops_for_v1(self):
# If default, override splitting ops for piecewise cudagraph on V1.
# NOTE: this function needs to be called
if not self.splitting_ops:
self.splitting_ops = [
"vllm.unified_attention",
"vllm.unified_attention_with_output",
]
@dataclass
class VllmConfig:
"""Dataclass which contains all vllm-related configuration. This
simplifies passing around the distinct configurations in the codebase.
"""
model_config: ModelConfig = field(default=None, init=True) # type: ignore
cache_config: CacheConfig = field(default=None, init=True) # type: ignore
parallel_config: ParallelConfig = field(default_factory=ParallelConfig,
init=True)
scheduler_config: SchedulerConfig = field(default_factory=SchedulerConfig,
init=True)
device_config: DeviceConfig = field(default=None,
init=True) # type: ignore
load_config: LoadConfig = field(default=None, init=True) # type: ignore
lora_config: Optional[LoRAConfig] = None
speculative_config: SpeculativeConfig = field(default=None,
init=True) # type: ignore
decoding_config: Optional[DecodingConfig] = None
observability_config: Optional[ObservabilityConfig] = None
prompt_adapter_config: Optional[PromptAdapterConfig] = None
quant_config: Optional[QuantizationConfig] = None
compilation_config: CompilationConfig = field(default=None,
init=True) # type: ignore
kv_transfer_config: KVTransferConfig = field(default=None,
init=True) # type: ignore
kv_events_config: Optional[KVEventsConfig] = None
# some opaque config, only used to provide additional information
# for the hash computation, mainly used for testing, debugging or out of
# tree config registration.
additional_config: SupportsHash = field(default=None,
init=True) # type: ignore
instance_id: str = ""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
factors: list[Any] = []
# summarize vllm config
vllm_factors: list[Any] = []
from vllm import __version__
vllm_factors.append(__version__)
vllm_factors.append(envs.VLLM_USE_V1)
if self.model_config:
vllm_factors.append(self.model_config.compute_hash())
else:
vllm_factors.append("None")
if self.cache_config:
vllm_factors.append(self.cache_config.compute_hash())
else:
vllm_factors.append("None")
if self.parallel_config:
vllm_factors.append(self.parallel_config.compute_hash())
else:
vllm_factors.append("None")
if self.scheduler_config:
vllm_factors.append(self.scheduler_config.compute_hash())
else:
vllm_factors.append("None")
if self.device_config:
vllm_factors.append(self.device_config.compute_hash())
else:
vllm_factors.append("None")
if self.load_config:
vllm_factors.append(self.load_config.compute_hash())
else:
vllm_factors.append("None")
if self.lora_config:
vllm_factors.append(self.lora_config.compute_hash())
# LoRA creates static buffers based on max_num_batched_tokens.
# The tensor sizes and strides get captured in the torch.compile
# graph explicitly.
vllm_factors.append(
str(self.scheduler_config.max_num_batched_tokens))
else:
vllm_factors.append("None")
if self.speculative_config:
vllm_factors.append(self.speculative_config.compute_hash())
else:
vllm_factors.append("None")
if self.decoding_config:
vllm_factors.append(self.decoding_config.compute_hash())
else:
vllm_factors.append("None")
if self.observability_config:
vllm_factors.append(self.observability_config.compute_hash())
else:
vllm_factors.append("None")
if self.prompt_adapter_config:
vllm_factors.append(self.prompt_adapter_config.compute_hash())
else:
vllm_factors.append("None")
if self.quant_config:
pass # should be captured by model_config.quantization
if self.compilation_config:
vllm_factors.append(self.compilation_config.compute_hash())
else:
vllm_factors.append("None")
if self.kv_transfer_config:
vllm_factors.append(self.kv_transfer_config.compute_hash())
else:
vllm_factors.append("None")
if self.additional_config:
vllm_factors.append(self.additional_config.compute_hash())
else:
vllm_factors.append("None")
factors.append(vllm_factors)
hash_str = hashlib.md5(str(factors).encode(),
usedforsecurity=False).hexdigest()[:10]
return hash_str
def pad_for_cudagraph(self, batch_size: int) -> int:
# if batch_size > self.compilation_config.max_capture_size,
# it should raise an IndexError.
# the caller should make sure the batch_size is within the range,
# i.e., batch_size <= self.compilation_config.max_capture_size
return self.compilation_config.bs_to_padded_graph_size[batch_size]
@staticmethod
def _get_quantization_config(
model_config: ModelConfig,
load_config: LoadConfig) -> Optional[QuantizationConfig]:
"""Get the quantization config."""
from vllm.platforms import current_platform
if model_config.quantization is not None:
from vllm.model_executor.model_loader.weight_utils import (
get_quant_config)
quant_config = get_quant_config(model_config, load_config)
capability_tuple = current_platform.get_device_capability()
if capability_tuple is not None:
capability = capability_tuple.to_int()
if capability < quant_config.get_min_capability():
raise ValueError(
f"The quantization method {model_config.quantization} "
"is not supported for the current GPU. Minimum "
f"capability: {quant_config.get_min_capability()}. "
f"Current capability: {capability}.")
supported_dtypes = quant_config.get_supported_act_dtypes()
if model_config.dtype not in supported_dtypes:
raise ValueError(
f"{model_config.dtype} is not supported for quantization "
f"method {model_config.quantization}. Supported dtypes: "
f"{supported_dtypes}")
return quant_config
return None
@staticmethod
def get_quantization_config(
model_config: ModelConfig,
load_config: LoadConfig) -> Optional[QuantizationConfig]:
import copy
# For some reason, the _ version of this modifies the model_config
# object, so using deepcopy to avoid this problem.
return VllmConfig._get_quantization_config(copy.deepcopy(model_config),
load_config)
def with_hf_config(
self,
hf_config: PretrainedConfig,
architectures: Optional[list[str]] = None,
) -> "VllmConfig":
if architectures is not None:
hf_config = copy.deepcopy(hf_config)
hf_config.architectures = architectures
model_config = copy.deepcopy(self.model_config)
model_config.hf_config = hf_config
return replace(self, model_config=model_config)
def __post_init__(self):
"""Verify configs are valid & consistent with each other.
"""
if self.model_config is not None:
self.model_config.verify_async_output_proc(self.parallel_config,
self.speculative_config,
self.device_config)
self.model_config.verify_with_parallel_config(self.parallel_config)
if self.cache_config is not None:
self.cache_config.verify_with_parallel_config(self.parallel_config)
if self.lora_config:
self.lora_config.verify_with_cache_config(self.cache_config)
self.lora_config.verify_with_model_config(self.model_config)
self.lora_config.verify_lora_support()
if self.prompt_adapter_config:
self.prompt_adapter_config.verify_with_model_config(
self.model_config)
if self.quant_config is None and \
self.model_config is not None and self.load_config is not None:
self.quant_config = VllmConfig._get_quantization_config(
self.model_config, self.load_config)
from vllm.platforms import current_platform
if self.scheduler_config is not None and \
self.model_config is not None and \
self.scheduler_config.chunked_prefill_enabled and \
self.model_config.dtype == torch.float32 and \
current_platform.get_device_capability() == (7, 5):
logger.warning_once(
"Turing devices tensor cores do not support float32 matmul. "
"To workaround this limitation, vLLM will set 'ieee' input "
"precision for chunked prefill triton kernels.")
if self.compilation_config is None:
self.compilation_config = CompilationConfig()
if self.compilation_config.pass_config.enable_sequence_parallelism:
self.compilation_config.custom_ops.append("+rms_norm")
if envs.VLLM_USE_V1 and self.model_config is not None and \
not self.model_config.enforce_eager:
# NOTE(woosuk): Currently, we use inductor because the piecewise
# CUDA graphs do not work properly with the custom CUDA kernels.
# FIXME(woosuk): Disable inductor to reduce the compilation time
# and avoid any potential issues with the inductor.
# FIXME(rob): Add function to set all of these.
if not self.compilation_config.custom_ops:
self.compilation_config.custom_ops = ["none"]
self.compilation_config.use_cudagraph = True
self.compilation_config.use_inductor = True
self.compilation_config.cudagraph_num_of_warmups = 1
self.compilation_config.pass_config.enable_fusion = False
self.compilation_config.pass_config.enable_noop = False
self.compilation_config.level = CompilationLevel.PIECEWISE
self.compilation_config.set_splitting_ops_for_v1()
if self.parallel_config is not None and \
self.parallel_config.tensor_parallel_size > 1 and \
self.parallel_config.pipeline_parallel_size > 1 and \
self.compilation_config is not None and \
self.compilation_config.pass_config is not None and \
self.compilation_config.pass_config.enable_sequence_parallelism:
logger.warning_once(
"Sequence parallelism is not supported with pipeline "
"parallelism. Disabling sequence parallelism.")
self.compilation_config.pass_config.\
enable_sequence_parallelism = False
self._set_cudagraph_sizes()
if self.cache_config is not None and \
self.cache_config.cpu_offload_gb > 0 and \
self.compilation_config.level != CompilationLevel.NO_COMPILATION \
and not envs.VLLM_USE_V1:
logger.warning(
"CPU offload is not supported with `torch.compile` in v0 yet."
" Disabling `torch.compile`.")
self.compilation_config.level = CompilationLevel.NO_COMPILATION
if ((not envs.VLLM_USE_V1) and self.lora_config is not None
and self.compilation_config.level
!= CompilationLevel.NO_COMPILATION):
logger.warning(
"LoRA for V0 is not supported with `torch.compile` yet. "
"Disabling `torch.compile`.")
self.compilation_config.level = CompilationLevel.NO_COMPILATION
if self.model_config and self.model_config.use_mla and \
not (current_platform.is_cuda() or current_platform.is_rocm()):
logger.info(
"MLA is enabled on a non-GPU platform; forcing chunked "
"prefill and prefix caching to be disabled.")
self.scheduler_config.enable_chunked_prefill = False
self.scheduler_config.chunked_prefill_enabled = False
self.scheduler_config.max_num_batched_tokens = max(
self.scheduler_config.max_model_len,
_DEFAULT_MAX_NUM_BATCHED_TOKENS)
if self.cache_config is not None:
self.cache_config.enable_prefix_caching = False
if (self.kv_events_config
and self.kv_events_config.enable_kv_cache_events
and not self.cache_config.enable_prefix_caching):
logger.warning(
"KV cache events are on, but prefix caching is not enabled."
"Use --enable-prefix-caching to enable.")
if (self.kv_events_config and self.kv_events_config.publisher != "null"
and not self.kv_events_config.enable_kv_cache_events):
logger.warning("KV cache events are disabled,"
"but the scheduler is configured to publish them."
"Modify KVEventsConfig.enable_kv_cache_events"
"to True to enable.")
current_platform.check_and_update_config(self)
if not self.instance_id:
self.instance_id = random_uuid()[:5]
def update_sizes_for_sequence_parallelism(self,
possible_sizes: list) -> list:
# remove the sizes that not multiple of tp_size when
# enable sequence parallelism
removed_sizes = [
size for size in possible_sizes
if size % self.parallel_config.tensor_parallel_size != 0
]
if removed_sizes:
logger.warning(
"Batch sizes %s are removed because they are not "
"multiple of tp_size %d when "
"sequence parallelism is enabled", removed_sizes,
self.parallel_config.tensor_parallel_size)
return [
size for size in possible_sizes
if size % self.parallel_config.tensor_parallel_size == 0
]
def _set_cudagraph_sizes(self):
"""
cudagraph batchsize padding logic:
`[1, 2, 4] + [8 * i for i in range(1, 1025)]` is a list of all possible
batch sizes that cudagraph will capture.
Depending on the engine's configuration of `max_num_seqs`, the
candidate batch sizes to capture cudagraph will shrink to the subset
which just cover the range of `[1, max_num_seqs]`. In the common case,
`max_num_seqs` is 256, and the cudagraph batch sizes will be
`[1, 2, 4, 8, 16, 24, 32, 40, ..., 256]`.
However, if users specify the cudagraph capture sizes through
compilation config, we will use the specified sizes instead.
In the end, `vllm_config.compilation_config.cudagraph_capture_sizes`
will be the final sizes to capture cudagraph (in descending order).
During runtime, if batchsize is larger than
`vllm_config.compilation_config.cudagraph_capture_sizes`,
no cudagraph will be used.
If the batch size is no larger than
`vllm_config.compilation_config.cudagraph_capture_sizes`,
we can quickly find the padded graph size for a given batch size by
looking up `vllm_config.compilation_config.bs_to_padded_graph_size`.
"""
# calculate the default `batch_size_capture_list`
if not envs.VLLM_USE_V1:
batch_size_capture_list = []
max_batchsize_to_capture = 0
if self.scheduler_config is not None and \
self.model_config is not None and \
not self.model_config.enforce_eager:
possible_sizes = [1, 2, 4] + [8 * i for i in range(1, 1025)]
if self.parallel_config.tensor_parallel_size > 1 and \
self.compilation_config.pass_config.enable_sequence_parallelism:
possible_sizes = self.update_sizes_for_sequence_parallelism(
possible_sizes)
# find the minimum size that is larger than max_num_seqs,
# which then becomes the max_batchsize_to_capture
larger_sizes = [
x for x in possible_sizes
if x >= self.scheduler_config.max_num_seqs
]
if larger_sizes:
max_batchsize_to_capture = larger_sizes[0]
else:
max_batchsize_to_capture = possible_sizes[-1]
# filter out the sizes that are
# larger than max_batchsize_to_capture
batch_size_capture_list = [
size for size in possible_sizes
if size <= max_batchsize_to_capture
]
else:
batch_size_capture_list = []
if self.model_config is not None and \
not self.model_config.enforce_eager:
batch_size_capture_list = [1, 2, 4
] + [i for i in range(8, 513, 8)]
if self.parallel_config.tensor_parallel_size > 1 and \
self.compilation_config.pass_config.enable_sequence_parallelism:
batch_size_capture_list = \
self.update_sizes_for_sequence_parallelism(batch_size_capture_list)
max_num_tokens = self.scheduler_config.max_num_batched_tokens
batch_size_capture_list = [
size for size in batch_size_capture_list
if size <= max_num_tokens
]
self.compilation_config.init_with_cudagraph_sizes(
batch_size_capture_list)
def __str__(self):
return (
f"model={self.model_config.model!r},"
f" speculative_config={self.speculative_config!r},"
f" tokenizer={self.model_config.tokenizer!r}, "
f"skip_tokenizer_init={self.model_config.skip_tokenizer_init},"
f" tokenizer_mode={self.model_config.tokenizer_mode}, "
f"revision={self.model_config.revision}, "
f"override_neuron_config={self.model_config.override_neuron_config},"
f" tokenizer_revision={self.model_config.tokenizer_revision}, "
f"trust_remote_code={self.model_config.trust_remote_code}, "
f"dtype={self.model_config.dtype}, "
f"max_seq_len={self.model_config.max_model_len},"
f" download_dir={self.load_config.download_dir!r}, "
f"load_format={self.load_config.load_format}, "
f"tensor_parallel_size={self.parallel_config.tensor_parallel_size},"
f" pipeline_parallel_size={self.parallel_config.pipeline_parallel_size}, " # noqa
f"disable_custom_all_reduce={self.parallel_config.disable_custom_all_reduce}, " # noqa
f"quantization={self.model_config.quantization}, "
f"enforce_eager={self.model_config.enforce_eager}, "
f"kv_cache_dtype={self.cache_config.cache_dtype}, "
f" device_config={self.device_config.device}, "
f"decoding_config={self.decoding_config!r}, "
f"observability_config={self.observability_config!r}, "
f"seed={self.model_config.seed}, "
f"served_model_name={self.model_config.served_model_name}, "
f"num_scheduler_steps={self.scheduler_config.num_scheduler_steps}, "
f"multi_step_stream_outputs={self.scheduler_config.multi_step_stream_outputs}, " # noqa
f"enable_prefix_caching={self.cache_config.enable_prefix_caching}, "
f"chunked_prefill_enabled={self.scheduler_config.chunked_prefill_enabled}, " # noqa
f"use_async_output_proc={self.model_config.use_async_output_proc}, "
f"pooler_config={self.model_config.pooler_config!r}, "
f"compilation_config={self.compilation_config!r}")
_current_vllm_config: Optional[VllmConfig] = None
@contextmanager
def set_current_vllm_config(vllm_config: VllmConfig, check_compile=False):
"""
Temporarily set the current vLLM config.
Used during model initialization.
We save the current vLLM config in a global variable,
so that all modules can access it, e.g. custom ops
can access the vLLM config to determine how to dispatch.
"""
global _current_vllm_config
old_vllm_config = _current_vllm_config
from vllm.compilation.counter import compilation_counter
num_models_seen = compilation_counter.num_models_seen
try:
_current_vllm_config = vllm_config
yield
except Exception:
raise
else:
logger.debug("enabled custom ops: %s",
vllm_config.compilation_config.enabled_custom_ops)
logger.debug("disabled custom ops: %s",
vllm_config.compilation_config.disabled_custom_ops)
if check_compile and \
vllm_config.compilation_config.level == CompilationLevel.PIECEWISE \
and compilation_counter.num_models_seen == num_models_seen:
# If the model supports compilation,
# compilation_counter.num_models_seen should be increased
# by at least 1.
# If it is not increased, it means the model does not support
# compilation (does not have @support_torch_compile decorator).
logger.warning(
"`torch.compile` is turned on, but the model %s"
" does not support it. Please open an issue on GitHub"
" if you want it to be supported.",
vllm_config.model_config.model)
finally:
_current_vllm_config = old_vllm_config
def get_current_vllm_config() -> VllmConfig:
if _current_vllm_config is None:
# in ci, usually when we test custom ops/modules directly,
# we don't set the vllm config. In that case, we set a default
# config.
logger.warning("Current vLLM config is not set.")
from vllm.config import VllmConfig
return VllmConfig()
return _current_vllm_config
def contains_object_print(text):
"""
Check if the text looks like a printed Python object, e.g.
contains any substring matching the pattern: "at 0xFFFFFFF>"
We match against 0x followed by 2-16 hex chars (there's
a max of 16 on a 64 bit system).
Args:
text (str): The text to check
Returns:
bool: True if a match is found, False otherwise
"""
pattern = r'at 0x[a-fA-F0-9]{2,16}>'
match = re.search(pattern, text)
return match is not None
def assert_hashable(text):
if not contains_object_print(text):
return True
raise AssertionError(
f"vLLM tried to hash some configs that may have Python objects ids "
f"in them. This is a bug, please file an issue. "
f"Text being hashed: {text}")
T = TypeVar("T")
def get_layers_from_vllm_config(vllm_config: VllmConfig,
layer_type: type[T]) -> dict[str, T]:
return {
layer_name: layer
for layer_name, layer in
vllm_config.compilation_config.static_forward_context.items()
if isinstance(layer, layer_type)
}