mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 02:15:01 +08:00
875 lines
24 KiB
Markdown
875 lines
24 KiB
Markdown
# Benchmarking vLLM
|
||
|
||
This README guides you through running benchmark tests with the extensive
|
||
datasets supported on vLLM. It’s a living document, updated as new features and datasets
|
||
become available.
|
||
|
||
## Dataset Overview
|
||
|
||
<table style="width:100%; border-collapse: collapse;">
|
||
<thead>
|
||
<tr>
|
||
<th style="width:15%; text-align: left;">Dataset</th>
|
||
<th style="width:10%; text-align: center;">Online</th>
|
||
<th style="width:10%; text-align: center;">Offline</th>
|
||
<th style="width:65%; text-align: left;">Data Path</th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<td><strong>ShareGPT</strong></td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td><code>wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json</code></td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>ShareGPT4V (Image)</strong></td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td>
|
||
<code>wget https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_instruct_gpt4-vision_cap100k.json</code>
|
||
<br>
|
||
<div>Note that the images need to be downloaded separately. For example, to download COCO's 2017 Train images:</div>
|
||
<code>wget http://images.cocodataset.org/zips/train2017.zip</code>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>ShareGPT4Video (Video)</strong></td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td>
|
||
<code>git clone https://huggingface.co/datasets/ShareGPT4Video/ShareGPT4Video</code>
|
||
</td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>BurstGPT</strong></td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td><code>wget https://github.com/HPMLL/BurstGPT/releases/download/v1.1/BurstGPT_without_fails_2.csv</code></td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>Sonnet (deprecated)</strong></td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td>Local file: <code>benchmarks/sonnet.txt</code></td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>Random</strong></td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td><code>synthetic</code></td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>RandomMultiModal (Image/Video)</strong></td>
|
||
<td style="text-align: center;">🟡</td>
|
||
<td style="text-align: center;">🚧</td>
|
||
<td><code>synthetic</code> </td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>Prefix Repetition</strong></td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td><code>synthetic</code></td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>HuggingFace-VisionArena</strong></td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td><code>lmarena-ai/VisionArena-Chat</code></td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>HuggingFace-InstructCoder</strong></td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td><code>likaixin/InstructCoder</code></td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>HuggingFace-AIMO</strong></td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td><code>AI-MO/aimo-validation-aime</code> , <code>AI-MO/NuminaMath-1.5</code>, <code>AI-MO/NuminaMath-CoT</code></td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>HuggingFace-Other</strong></td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td><code>lmms-lab/LLaVA-OneVision-Data</code>, <code>Aeala/ShareGPT_Vicuna_unfiltered</code></td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>HuggingFace-MTBench</strong></td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td><code>philschmid/mt-bench</code></td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>HuggingFace-Blazedit</strong></td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td><code>vdaita/edit_5k_char</code>, <code>vdaita/edit_10k_char</code></td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>Spec Bench</strong></td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td><code>wget https://raw.githubusercontent.com/hemingkx/Spec-Bench/refs/heads/main/data/spec_bench/question.jsonl</code></td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>Custom</strong></td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td>Local file: <code>data.jsonl</code></td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
|
||
✅: supported
|
||
|
||
🟡: Partial support
|
||
|
||
🚧: to be supported
|
||
|
||
**Note**: HuggingFace dataset's `dataset-name` should be set to `hf`.
|
||
For local `dataset-path`, please set `hf-name` to its Hugging Face ID like
|
||
|
||
```bash
|
||
--dataset-path /datasets/VisionArena-Chat/ --hf-name lmarena-ai/VisionArena-Chat
|
||
```
|
||
|
||
## 🚀 Example - Online Benchmark
|
||
|
||
<details>
|
||
<summary>Show more</summary>
|
||
|
||
<br/>
|
||
|
||
First start serving your model
|
||
|
||
```bash
|
||
vllm serve NousResearch/Hermes-3-Llama-3.1-8B
|
||
```
|
||
|
||
Then run the benchmarking script
|
||
|
||
```bash
|
||
# download dataset
|
||
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||
vllm bench serve \
|
||
--backend vllm \
|
||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||
--endpoint /v1/completions \
|
||
--dataset-name sharegpt \
|
||
--dataset-path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
|
||
--num-prompts 10
|
||
```
|
||
|
||
If successful, you will see the following output
|
||
|
||
```text
|
||
============ Serving Benchmark Result ============
|
||
Successful requests: 10
|
||
Benchmark duration (s): 5.78
|
||
Total input tokens: 1369
|
||
Total generated tokens: 2212
|
||
Request throughput (req/s): 1.73
|
||
Output token throughput (tok/s): 382.89
|
||
Total Token throughput (tok/s): 619.85
|
||
---------------Time to First Token----------------
|
||
Mean TTFT (ms): 71.54
|
||
Median TTFT (ms): 73.88
|
||
P99 TTFT (ms): 79.49
|
||
-----Time per Output Token (excl. 1st token)------
|
||
Mean TPOT (ms): 7.91
|
||
Median TPOT (ms): 7.96
|
||
P99 TPOT (ms): 8.03
|
||
---------------Inter-token Latency----------------
|
||
Mean ITL (ms): 7.74
|
||
Median ITL (ms): 7.70
|
||
P99 ITL (ms): 8.39
|
||
==================================================
|
||
```
|
||
|
||
### Custom Dataset
|
||
|
||
If the dataset you want to benchmark is not supported yet in vLLM, even then you can benchmark on it using `CustomDataset`. Your data needs to be in `.jsonl` format and needs to have "prompt" field per entry, e.g., data.jsonl
|
||
|
||
```json
|
||
{"prompt": "What is the capital of India?"}
|
||
{"prompt": "What is the capital of Iran?"}
|
||
{"prompt": "What is the capital of China?"}
|
||
```
|
||
|
||
```bash
|
||
# start server
|
||
VLLM_USE_V1=1 vllm serve meta-llama/Llama-3.1-8B-Instruct
|
||
```
|
||
|
||
```bash
|
||
# run benchmarking script
|
||
vllm bench serve --port 9001 --save-result --save-detailed \
|
||
--backend vllm \
|
||
--model meta-llama/Llama-3.1-8B-Instruct \
|
||
--endpoint /v1/completions \
|
||
--dataset-name custom \
|
||
--dataset-path <path-to-your-data-jsonl> \
|
||
--custom-skip-chat-template \
|
||
--num-prompts 80 \
|
||
--max-concurrency 1 \
|
||
--temperature=0.3 \
|
||
--top-p=0.75 \
|
||
--result-dir "./log/"
|
||
```
|
||
|
||
You can skip applying chat template if your data already has it by using `--custom-skip-chat-template`.
|
||
|
||
### VisionArena Benchmark for Vision Language Models
|
||
|
||
```bash
|
||
# need a model with vision capability here
|
||
vllm serve Qwen/Qwen2-VL-7B-Instruct
|
||
```
|
||
|
||
```bash
|
||
vllm bench serve \
|
||
--backend openai-chat \
|
||
--endpoint-type openai-chat \
|
||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||
--endpoint /v1/chat/completions \
|
||
--dataset-name hf \
|
||
--dataset-path lmarena-ai/VisionArena-Chat \
|
||
--hf-split train \
|
||
--num-prompts 1000
|
||
```
|
||
|
||
### InstructCoder Benchmark with Speculative Decoding
|
||
|
||
``` bash
|
||
VLLM_USE_V1=1 vllm serve meta-llama/Meta-Llama-3-8B-Instruct \
|
||
--speculative-config $'{"method": "ngram",
|
||
"num_speculative_tokens": 5, "prompt_lookup_max": 5,
|
||
"prompt_lookup_min": 2}'
|
||
```
|
||
|
||
``` bash
|
||
vllm bench serve \
|
||
--model meta-llama/Meta-Llama-3-8B-Instruct \
|
||
--dataset-name hf \
|
||
--dataset-path likaixin/InstructCoder \
|
||
--num-prompts 2048
|
||
```
|
||
|
||
### Spec Bench Benchmark with Speculative Decoding
|
||
|
||
``` bash
|
||
VLLM_USE_V1=1 vllm serve meta-llama/Meta-Llama-3-8B-Instruct \
|
||
--speculative-config $'{"method": "ngram",
|
||
"num_speculative_tokens": 5, "prompt_lookup_max": 5,
|
||
"prompt_lookup_min": 2}'
|
||
```
|
||
|
||
[SpecBench dataset](https://github.com/hemingkx/Spec-Bench)
|
||
|
||
Run all categories:
|
||
|
||
``` bash
|
||
# Download the dataset using:
|
||
# wget https://raw.githubusercontent.com/hemingkx/Spec-Bench/refs/heads/main/data/spec_bench/question.jsonl
|
||
|
||
vllm bench serve \
|
||
--model meta-llama/Meta-Llama-3-8B-Instruct \
|
||
--dataset-name spec_bench \
|
||
--dataset-path "<YOUR_DOWNLOADED_PATH>/data/spec_bench/question.jsonl" \
|
||
--num-prompts -1
|
||
```
|
||
|
||
Available categories include `[writing, roleplay, reasoning, math, coding, extraction, stem, humanities, translation, summarization, qa, math_reasoning, rag]`.
|
||
|
||
Run only a specific category like "summarization":
|
||
|
||
``` bash
|
||
vllm bench serve \
|
||
--model meta-llama/Meta-Llama-3-8B-Instruct \
|
||
--dataset-name spec_bench \
|
||
--dataset-path "<YOUR_DOWNLOADED_PATH>/data/spec_bench/question.jsonl" \
|
||
--num-prompts -1
|
||
--spec-bench-category "summarization"
|
||
```
|
||
|
||
### Other HuggingFaceDataset Examples
|
||
|
||
```bash
|
||
vllm serve Qwen/Qwen2-VL-7B-Instruct
|
||
```
|
||
|
||
`lmms-lab/LLaVA-OneVision-Data`:
|
||
|
||
```bash
|
||
vllm bench serve \
|
||
--backend openai-chat \
|
||
--endpoint-type openai-chat \
|
||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||
--endpoint /v1/chat/completions \
|
||
--dataset-name hf \
|
||
--dataset-path lmms-lab/LLaVA-OneVision-Data \
|
||
--hf-split train \
|
||
--hf-subset "chart2text(cauldron)" \
|
||
--num-prompts 10
|
||
```
|
||
|
||
`Aeala/ShareGPT_Vicuna_unfiltered`:
|
||
|
||
```bash
|
||
vllm bench serve \
|
||
--backend openai-chat \
|
||
--endpoint-type openai-chat \
|
||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||
--endpoint /v1/chat/completions \
|
||
--dataset-name hf \
|
||
--dataset-path Aeala/ShareGPT_Vicuna_unfiltered \
|
||
--hf-split train \
|
||
--num-prompts 10
|
||
```
|
||
|
||
`AI-MO/aimo-validation-aime`:
|
||
|
||
``` bash
|
||
vllm bench serve \
|
||
--model Qwen/QwQ-32B \
|
||
--dataset-name hf \
|
||
--dataset-path AI-MO/aimo-validation-aime \
|
||
--num-prompts 10 \
|
||
--seed 42
|
||
```
|
||
|
||
`philschmid/mt-bench`:
|
||
|
||
``` bash
|
||
vllm bench serve \
|
||
--model Qwen/QwQ-32B \
|
||
--dataset-name hf \
|
||
--dataset-path philschmid/mt-bench \
|
||
--num-prompts 80
|
||
```
|
||
|
||
`vdaita/edit_5k_char` or `vdaita/edit_10k_char`:
|
||
|
||
``` bash
|
||
vllm bench serve \
|
||
--model Qwen/QwQ-32B \
|
||
--dataset-name hf \
|
||
--dataset-path vdaita/edit_5k_char \
|
||
--num-prompts 90 \
|
||
--blazedit-min-distance 0.01 \
|
||
--blazedit-max-distance 0.99
|
||
```
|
||
|
||
### Running With Sampling Parameters
|
||
|
||
When using OpenAI-compatible backends such as `vllm`, optional sampling
|
||
parameters can be specified. Example client command:
|
||
|
||
```bash
|
||
vllm bench serve \
|
||
--backend vllm \
|
||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||
--endpoint /v1/completions \
|
||
--dataset-name sharegpt \
|
||
--dataset-path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
|
||
--top-k 10 \
|
||
--top-p 0.9 \
|
||
--temperature 0.5 \
|
||
--num-prompts 10
|
||
```
|
||
|
||
### Running With Ramp-Up Request Rate
|
||
|
||
The benchmark tool also supports ramping up the request rate over the
|
||
duration of the benchmark run. This can be useful for stress testing the
|
||
server or finding the maximum throughput that it can handle, given some latency budget.
|
||
|
||
Two ramp-up strategies are supported:
|
||
|
||
- `linear`: Increases the request rate linearly from a start value to an end value.
|
||
- `exponential`: Increases the request rate exponentially.
|
||
|
||
The following arguments can be used to control the ramp-up:
|
||
|
||
- `--ramp-up-strategy`: The ramp-up strategy to use (`linear` or `exponential`).
|
||
- `--ramp-up-start-rps`: The request rate at the beginning of the benchmark.
|
||
- `--ramp-up-end-rps`: The request rate at the end of the benchmark.
|
||
|
||
</details>
|
||
|
||
## 📈 Example - Offline Throughput Benchmark
|
||
|
||
<details>
|
||
<summary>Show more</summary>
|
||
|
||
<br/>
|
||
|
||
```bash
|
||
vllm bench throughput \
|
||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||
--dataset-name sonnet \
|
||
--dataset-path vllm/benchmarks/sonnet.txt \
|
||
--num-prompts 10
|
||
```
|
||
|
||
If successful, you will see the following output
|
||
|
||
```text
|
||
Throughput: 7.15 requests/s, 4656.00 total tokens/s, 1072.15 output tokens/s
|
||
Total num prompt tokens: 5014
|
||
Total num output tokens: 1500
|
||
```
|
||
|
||
### VisionArena Benchmark for Vision Language Models
|
||
|
||
```bash
|
||
vllm bench throughput \
|
||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||
--backend vllm-chat \
|
||
--dataset-name hf \
|
||
--dataset-path lmarena-ai/VisionArena-Chat \
|
||
--num-prompts 1000 \
|
||
--hf-split train
|
||
```
|
||
|
||
The `num prompt tokens` now includes image token counts
|
||
|
||
```text
|
||
Throughput: 2.55 requests/s, 4036.92 total tokens/s, 326.90 output tokens/s
|
||
Total num prompt tokens: 14527
|
||
Total num output tokens: 1280
|
||
```
|
||
|
||
### InstructCoder Benchmark with Speculative Decoding
|
||
|
||
``` bash
|
||
VLLM_WORKER_MULTIPROC_METHOD=spawn \
|
||
VLLM_USE_V1=1 \
|
||
vllm bench throughput \
|
||
--dataset-name=hf \
|
||
--dataset-path=likaixin/InstructCoder \
|
||
--model=meta-llama/Meta-Llama-3-8B-Instruct \
|
||
--input-len=1000 \
|
||
--output-len=100 \
|
||
--num-prompts=2048 \
|
||
--async-engine \
|
||
--speculative-config $'{"method": "ngram",
|
||
"num_speculative_tokens": 5, "prompt_lookup_max": 5,
|
||
"prompt_lookup_min": 2}'
|
||
```
|
||
|
||
```text
|
||
Throughput: 104.77 requests/s, 23836.22 total tokens/s, 10477.10 output tokens/s
|
||
Total num prompt tokens: 261136
|
||
Total num output tokens: 204800
|
||
```
|
||
|
||
### Other HuggingFaceDataset Examples
|
||
|
||
`lmms-lab/LLaVA-OneVision-Data`:
|
||
|
||
```bash
|
||
vllm bench throughput \
|
||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||
--backend vllm-chat \
|
||
--dataset-name hf \
|
||
--dataset-path lmms-lab/LLaVA-OneVision-Data \
|
||
--hf-split train \
|
||
--hf-subset "chart2text(cauldron)" \
|
||
--num-prompts 10
|
||
```
|
||
|
||
`Aeala/ShareGPT_Vicuna_unfiltered`:
|
||
|
||
```bash
|
||
vllm bench throughput \
|
||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||
--backend vllm-chat \
|
||
--dataset-name hf \
|
||
--dataset-path Aeala/ShareGPT_Vicuna_unfiltered \
|
||
--hf-split train \
|
||
--num-prompts 10
|
||
```
|
||
|
||
`AI-MO/aimo-validation-aime`:
|
||
|
||
```bash
|
||
vllm bench throughput \
|
||
--model Qwen/QwQ-32B \
|
||
--backend vllm \
|
||
--dataset-name hf \
|
||
--dataset-path AI-MO/aimo-validation-aime \
|
||
--hf-split train \
|
||
--num-prompts 10
|
||
```
|
||
|
||
Benchmark with LoRA adapters:
|
||
|
||
``` bash
|
||
# download dataset
|
||
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||
vllm bench throughput \
|
||
--model meta-llama/Llama-2-7b-hf \
|
||
--backend vllm \
|
||
--dataset_path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
|
||
--dataset_name sharegpt \
|
||
--num-prompts 10 \
|
||
--max-loras 2 \
|
||
--max-lora-rank 8 \
|
||
--enable-lora \
|
||
--lora-path yard1/llama-2-7b-sql-lora-test
|
||
```
|
||
|
||
</details>
|
||
|
||
## 🛠️ Example - Structured Output Benchmark
|
||
|
||
<details>
|
||
<summary>Show more</summary>
|
||
|
||
<br/>
|
||
|
||
Benchmark the performance of structured output generation (JSON, grammar, regex).
|
||
|
||
### Server Setup
|
||
|
||
```bash
|
||
vllm serve NousResearch/Hermes-3-Llama-3.1-8B
|
||
```
|
||
|
||
### JSON Schema Benchmark
|
||
|
||
```bash
|
||
python3 benchmarks/benchmark_serving_structured_output.py \
|
||
--backend vllm \
|
||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||
--dataset json \
|
||
--structured-output-ratio 1.0 \
|
||
--request-rate 10 \
|
||
--num-prompts 1000
|
||
```
|
||
|
||
### Grammar-based Generation Benchmark
|
||
|
||
```bash
|
||
python3 benchmarks/benchmark_serving_structured_output.py \
|
||
--backend vllm \
|
||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||
--dataset grammar \
|
||
--structure-type grammar \
|
||
--request-rate 10 \
|
||
--num-prompts 1000
|
||
```
|
||
|
||
### Regex-based Generation Benchmark
|
||
|
||
```bash
|
||
python3 benchmarks/benchmark_serving_structured_output.py \
|
||
--backend vllm \
|
||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||
--dataset regex \
|
||
--request-rate 10 \
|
||
--num-prompts 1000
|
||
```
|
||
|
||
### Choice-based Generation Benchmark
|
||
|
||
```bash
|
||
python3 benchmarks/benchmark_serving_structured_output.py \
|
||
--backend vllm \
|
||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||
--dataset choice \
|
||
--request-rate 10 \
|
||
--num-prompts 1000
|
||
```
|
||
|
||
### XGrammar Benchmark Dataset
|
||
|
||
```bash
|
||
python3 benchmarks/benchmark_serving_structured_output.py \
|
||
--backend vllm \
|
||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||
--dataset xgrammar_bench \
|
||
--request-rate 10 \
|
||
--num-prompts 1000
|
||
```
|
||
|
||
</details>
|
||
|
||
## 📚 Example - Long Document QA Benchmark
|
||
|
||
<details>
|
||
<summary>Show more</summary>
|
||
|
||
<br/>
|
||
|
||
Benchmark the performance of long document question-answering with prefix caching.
|
||
|
||
### Basic Long Document QA Test
|
||
|
||
```bash
|
||
python3 benchmarks/benchmark_long_document_qa_throughput.py \
|
||
--model meta-llama/Llama-2-7b-chat-hf \
|
||
--enable-prefix-caching \
|
||
--num-documents 16 \
|
||
--document-length 2000 \
|
||
--output-len 50 \
|
||
--repeat-count 5
|
||
```
|
||
|
||
### Different Repeat Modes
|
||
|
||
```bash
|
||
# Random mode (default) - shuffle prompts randomly
|
||
python3 benchmarks/benchmark_long_document_qa_throughput.py \
|
||
--model meta-llama/Llama-2-7b-chat-hf \
|
||
--enable-prefix-caching \
|
||
--num-documents 8 \
|
||
--document-length 3000 \
|
||
--repeat-count 3 \
|
||
--repeat-mode random
|
||
|
||
# Tile mode - repeat entire prompt list in sequence
|
||
python3 benchmarks/benchmark_long_document_qa_throughput.py \
|
||
--model meta-llama/Llama-2-7b-chat-hf \
|
||
--enable-prefix-caching \
|
||
--num-documents 8 \
|
||
--document-length 3000 \
|
||
--repeat-count 3 \
|
||
--repeat-mode tile
|
||
|
||
# Interleave mode - repeat each prompt consecutively
|
||
python3 benchmarks/benchmark_long_document_qa_throughput.py \
|
||
--model meta-llama/Llama-2-7b-chat-hf \
|
||
--enable-prefix-caching \
|
||
--num-documents 8 \
|
||
--document-length 3000 \
|
||
--repeat-count 3 \
|
||
--repeat-mode interleave
|
||
```
|
||
|
||
</details>
|
||
|
||
## 🗂️ Example - Prefix Caching Benchmark
|
||
|
||
<details>
|
||
<summary>Show more</summary>
|
||
|
||
<br/>
|
||
|
||
Benchmark the efficiency of automatic prefix caching.
|
||
|
||
### Fixed Prompt with Prefix Caching
|
||
|
||
```bash
|
||
python3 benchmarks/benchmark_prefix_caching.py \
|
||
--model meta-llama/Llama-2-7b-chat-hf \
|
||
--enable-prefix-caching \
|
||
--num-prompts 1 \
|
||
--repeat-count 100 \
|
||
--input-length-range 128:256
|
||
```
|
||
|
||
### ShareGPT Dataset with Prefix Caching
|
||
|
||
```bash
|
||
# download dataset
|
||
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||
|
||
python3 benchmarks/benchmark_prefix_caching.py \
|
||
--model meta-llama/Llama-2-7b-chat-hf \
|
||
--dataset-path /path/ShareGPT_V3_unfiltered_cleaned_split.json \
|
||
--enable-prefix-caching \
|
||
--num-prompts 20 \
|
||
--repeat-count 5 \
|
||
--input-length-range 128:256
|
||
```
|
||
|
||
### Prefix Repetition Dataset
|
||
|
||
```bash
|
||
vllm bench serve \
|
||
--backend openai \
|
||
--model meta-llama/Llama-2-7b-chat-hf \
|
||
--dataset-name prefix_repetition \
|
||
--num-prompts 100 \
|
||
--prefix-repetition-prefix-len 512 \
|
||
--prefix-repetition-suffix-len 128 \
|
||
--prefix-repetition-num-prefixes 5 \
|
||
--prefix-repetition-output-len 128
|
||
```
|
||
|
||
</details>
|
||
|
||
## ⚡ Example - Request Prioritization Benchmark
|
||
|
||
<details>
|
||
<summary>Show more</summary>
|
||
|
||
<br/>
|
||
|
||
Benchmark the performance of request prioritization in vLLM.
|
||
|
||
### Basic Prioritization Test
|
||
|
||
```bash
|
||
python3 benchmarks/benchmark_prioritization.py \
|
||
--model meta-llama/Llama-2-7b-chat-hf \
|
||
--input-len 128 \
|
||
--output-len 64 \
|
||
--num-prompts 100 \
|
||
--scheduling-policy priority
|
||
```
|
||
|
||
### Multiple Sequences per Prompt
|
||
|
||
```bash
|
||
python3 benchmarks/benchmark_prioritization.py \
|
||
--model meta-llama/Llama-2-7b-chat-hf \
|
||
--input-len 128 \
|
||
--output-len 64 \
|
||
--num-prompts 100 \
|
||
--scheduling-policy priority \
|
||
--n 2
|
||
```
|
||
|
||
</details>
|
||
|
||
## 👁️ Example - Multi-Modal Benchmark
|
||
|
||
<details>
|
||
<summary>Show more</summary>
|
||
|
||
<br/>
|
||
|
||
Benchmark the performance of multi-modal requests in vLLM.
|
||
|
||
### Images (ShareGPT4V)
|
||
|
||
Start vLLM:
|
||
|
||
```bash
|
||
python -m vllm.entrypoints.openai.api_server \
|
||
--model Qwen/Qwen2.5-VL-7B-Instruct \
|
||
--dtype bfloat16 \
|
||
--limit-mm-per-prompt '{"image": 1}' \
|
||
--allowed-local-media-path /path/to/sharegpt4v/images
|
||
```
|
||
|
||
Send requests with images:
|
||
|
||
```bash
|
||
vllm bench serve \
|
||
--backend openai-chat \
|
||
--model Qwen/Qwen2.5-VL-7B-Instruct \
|
||
--dataset-name sharegpt \
|
||
--dataset-path /path/to/ShareGPT4V/sharegpt4v_instruct_gpt4-vision_cap100k.json \
|
||
--num-prompts 100 \
|
||
--save-result \
|
||
--result-dir ~/vllm_benchmark_results \
|
||
--save-detailed \
|
||
--endpoint /v1/chat/completion
|
||
```
|
||
|
||
### Videos (ShareGPT4Video)
|
||
|
||
Start vLLM:
|
||
|
||
```bash
|
||
python -m vllm.entrypoints.openai.api_server \
|
||
--model Qwen/Qwen2.5-VL-7B-Instruct \
|
||
--dtype bfloat16 \
|
||
--limit-mm-per-prompt '{"video": 1}' \
|
||
--allowed-local-media-path /path/to/sharegpt4video/videos
|
||
```
|
||
|
||
Send requests with videos:
|
||
|
||
```bash
|
||
vllm bench serve \
|
||
--backend openai-chat \
|
||
--model Qwen/Qwen2.5-VL-7B-Instruct \
|
||
--dataset-name sharegpt \
|
||
--dataset-path /path/to/ShareGPT4Video/llava_v1_5_mix665k_with_video_chatgpt72k_share4video28k.json \
|
||
--num-prompts 100 \
|
||
--save-result \
|
||
--result-dir ~/vllm_benchmark_results \
|
||
--save-detailed \
|
||
--endpoint /v1/chat/completion
|
||
```
|
||
|
||
### Synthetic Random Images (random-mm)
|
||
|
||
Generate synthetic image inputs alongside random text prompts to stress-test vision models without external datasets.
|
||
|
||
Notes:
|
||
|
||
- Works only with online benchmark via the OpenAI backend (`--backend openai-chat`) and endpoint `/v1/chat/completions`.
|
||
- Video sampling is not yet implemented.
|
||
|
||
Start the server (example):
|
||
|
||
```bash
|
||
vllm serve Qwen/Qwen2.5-VL-3B-Instruct \
|
||
--dtype bfloat16 \
|
||
--max-model-len 16384 \
|
||
--limit-mm-per-prompt '{"image": 3, "video": 0}' \
|
||
--mm-processor-kwargs max_pixels=1003520
|
||
```
|
||
|
||
Benchmark. It is recommended to use the flag `--ignore-eos` to simulate real responses. You can set the size of the output via the arg `random-output-len`.
|
||
|
||
Ex.1: Fixed number of items and a single image resolution, enforcing generation of approx 40 tokens:
|
||
|
||
```bash
|
||
vllm bench serve \
|
||
--backend openai-chat \
|
||
--model Qwen/Qwen2.5-VL-3B-Instruct \
|
||
--endpoint /v1/chat/completions \
|
||
--dataset-name random-mm \
|
||
--num-prompts 100 \
|
||
--max-concurrency 10 \
|
||
--random-prefix-len 25 \
|
||
--random-input-len 300 \
|
||
--random-output-len 40 \
|
||
--random-range-ratio 0.2 \
|
||
--random-mm-base-items-per-request 2 \
|
||
--random-mm-limit-mm-per-prompt '{"image": 3, "video": 0}' \
|
||
--random-mm-bucket-config '{(224, 224, 1): 1.0}' \
|
||
--request-rate inf \
|
||
--ignore-eos \
|
||
--seed 42
|
||
```
|
||
|
||
The number of items per request can be controlled by passing multiple image buckets:
|
||
|
||
```bash
|
||
--random-mm-base-items-per-request 2 \
|
||
--random-mm-num-mm-items-range-ratio 0.5 \
|
||
--random-mm-limit-mm-per-prompt '{"image": 4, "video": 0}' \
|
||
--random-mm-bucket-config '{(256, 256, 1): 0.7, (720, 1280, 1): 0.3}' \
|
||
```
|
||
|
||
Flags specific to `random-mm`:
|
||
|
||
- `--random-mm-base-items-per-request`: base number of multimodal items per request.
|
||
- `--random-mm-num-mm-items-range-ratio`: vary item count uniformly in the closed integer range [floor(n·(1−r)), ceil(n·(1+r))]. Set r=0 to keep it fixed; r=1 allows 0 items.
|
||
- `--random-mm-limit-mm-per-prompt`: per-modality hard caps, e.g. '{"image": 3, "video": 0}'.
|
||
- `--random-mm-bucket-config`: dict mapping (H, W, T) → probability. Entries with probability 0 are removed; remaining probabilities are renormalized to sum to 1. Use T=1 for images. Set any T>1 for videos (video sampling not yet supported).
|
||
|
||
Behavioral notes:
|
||
|
||
- If the requested base item count cannot be satisfied under the provided per-prompt limits, the tool raises an error rather than silently clamping.
|
||
|
||
How sampling works:
|
||
|
||
- Determine per-request item count k by sampling uniformly from the integer range defined by `--random-mm-base-items-per-request` and `--random-mm-num-mm-items-range-ratio`, then clamp k to at most the sum of per-modality limits.
|
||
- For each of the k items, sample a bucket (H, W, T) according to the normalized probabilities in `--random-mm-bucket-config`, while tracking how many items of each modality have been added.
|
||
- If a modality (e.g., image) reaches its limit from `--random-mm-limit-mm-per-prompt`, all buckets of that modality are excluded and the remaining bucket probabilities are renormalized before continuing.
|
||
This should be seen as an edge case, and if this behavior can be avoided by setting `--random-mm-limit-mm-per-prompt` to a large number. Note that this might result in errors due to engine config `--limit-mm-per-prompt`.
|
||
- The resulting request contains synthetic image data in `multi_modal_data` (OpenAI Chat format). When `random-mm` is used with the OpenAI Chat backend, prompts remain text and MM content is attached via `multi_modal_data`.
|
||
|
||
</details>
|