vllm/vllm/model_executor/models/qwen3_next_mtp.py
Jee Jee Li 9d1c474704
[LoRA][1/N]Remove LoRA extra vocab (#28382)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-11-11 11:06:21 -08:00

297 lines
10 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Inference-only Qwen3Next MTP model."""
from collections.abc import Iterable
import torch
from torch import nn
from vllm.compilation.decorators import support_torch_compile
from vllm.config import VllmConfig
from vllm.distributed.parallel_state import get_pp_group
from vllm.logger import init_logger
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.linear import ColumnParallelLinear
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.qwen3_next import (
Qwen3NextDecoderLayer,
Qwen3NextRMSNorm,
QwenNextMixtureOfExperts,
)
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.configs import Qwen3NextConfig
from .interfaces import SupportsPP
from .utils import (
AutoWeightsLoader,
is_pp_missing_parameter,
make_empty_intermediate_tensors_factory,
maybe_prefix,
)
logger = init_logger(__name__)
KVCache = tuple[torch.Tensor, torch.Tensor]
@support_torch_compile
class Qwen3NextMultiTokenPredictor(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
model_config = vllm_config.model_config
quant_config = vllm_config.quant_config
config: Qwen3NextConfig = model_config.hf_config
self.config = config
self.vocab_size = config.vocab_size
self.mtp_start_layer_idx = config.num_hidden_layers
self.num_mtp_layers = getattr(config, "num_nextn_predict_layers", 1)
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
)
self.fc = ColumnParallelLinear(
self.config.hidden_size * 2,
self.config.hidden_size,
gather_output=True,
bias=False,
return_bias=False,
quant_config=quant_config,
prefix=f"{prefix}.fc",
)
self.layers = torch.nn.ModuleList(
Qwen3NextDecoderLayer(
vllm_config,
layer_type="full_attention",
prefix=f"{prefix}.layers.{idx}",
)
for idx in range(self.num_mtp_layers)
)
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size
)
self.norm = Qwen3NextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.pre_fc_norm_hidden = Qwen3NextRMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
self.pre_fc_norm_embedding = Qwen3NextRMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
hidden_states: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
spec_step_idx: int = 0,
) -> torch.Tensor:
if get_pp_group().is_first_rank:
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings(input_ids)
assert hidden_states.shape[-1] == inputs_embeds.shape[-1]
inputs_embeds = self.pre_fc_norm_embedding(inputs_embeds)
hidden_states = self.pre_fc_norm_hidden(hidden_states)
hidden_states = torch.cat([inputs_embeds, hidden_states], dim=-1)
hidden_states = self.fc(hidden_states)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
current_step_idx = spec_step_idx % self.num_mtp_layers
hidden_states, residual = self.layers[current_step_idx](
positions=positions,
hidden_states=hidden_states,
residual=residual,
)
if not get_pp_group().is_last_rank:
return IntermediateTensors(
{"hidden_states": hidden_states, "residual": residual}
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
# Params for weights, fp8 weight scales, fp8 activation scales
# (param_name, weight_name, expert_id, shard_id)
expert_params_mapping = FusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="gate_proj",
ckpt_down_proj_name="down_proj",
ckpt_up_proj_name="up_proj",
num_experts=self.config.num_experts,
)
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
if "mlp.experts" in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
if name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
# Skip loading extra bias for GPTQ models.
if (
name.endswith(".bias") or name.endswith("_bias")
) and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(
param,
loaded_weight,
name,
shard_id=shard_id,
expert_id=expert_id,
)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(
param, "weight_loader", default_weight_loader
)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
@support_torch_compile
class Qwen3NextMTP(nn.Module, SupportsPP, QwenNextMixtureOfExperts):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": ["up_proj", "down_proj"],
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
config = vllm_config.model_config.hf_config
self.vllm_config = vllm_config
cache_config = vllm_config.cache_config
assert not cache_config.enable_prefix_caching, (
"Qwen3NextMTP currently does not support prefix caching"
)
self.quant_config = vllm_config.quant_config
super().__init__()
self.config = config
self.model = Qwen3NextMultiTokenPredictor(
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "mtp")
)
self.lm_head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
prefix=maybe_prefix(prefix, "lm_head"),
)
self.logits_processor = LogitsProcessor(config.vocab_size)
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors
)
self.set_moe_parameters()
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
hidden_states: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
**kwargs: object,
):
hidden_states = self.model(
input_ids, positions, hidden_states, intermediate_tensors, inputs_embeds
)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
spec_step_idx: int = 0,
) -> torch.Tensor | None:
return self.logits_processor(self.lm_head, hidden_states)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
shared_weight_names = ["embed_tokens", "lm_head"]
def remap_weight_names(weights):
for name, weight in weights:
if name.startswith("mtp."):
name = name.replace("mtp.", "model.")
elif not any(key in name for key in shared_weight_names):
continue
yield name, weight
loader = AutoWeightsLoader(self)
return loader.load_weights(remap_weight_names(weights))