mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 00:06:06 +08:00
297 lines
10 KiB
Python
297 lines
10 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""Inference-only Qwen3Next MTP model."""
|
|
|
|
from collections.abc import Iterable
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import VllmConfig
|
|
from vllm.distributed.parallel_state import get_pp_group
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.fused_moe import FusedMoE
|
|
from vllm.model_executor.layers.linear import ColumnParallelLinear
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.models.qwen3_next import (
|
|
Qwen3NextDecoderLayer,
|
|
Qwen3NextRMSNorm,
|
|
QwenNextMixtureOfExperts,
|
|
)
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.transformers_utils.configs import Qwen3NextConfig
|
|
|
|
from .interfaces import SupportsPP
|
|
from .utils import (
|
|
AutoWeightsLoader,
|
|
is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory,
|
|
maybe_prefix,
|
|
)
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
KVCache = tuple[torch.Tensor, torch.Tensor]
|
|
|
|
|
|
@support_torch_compile
|
|
class Qwen3NextMultiTokenPredictor(nn.Module):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
model_config = vllm_config.model_config
|
|
quant_config = vllm_config.quant_config
|
|
|
|
config: Qwen3NextConfig = model_config.hf_config
|
|
|
|
self.config = config
|
|
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.mtp_start_layer_idx = config.num_hidden_layers
|
|
self.num_mtp_layers = getattr(config, "num_nextn_predict_layers", 1)
|
|
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
self.vocab_size,
|
|
config.hidden_size,
|
|
)
|
|
|
|
self.fc = ColumnParallelLinear(
|
|
self.config.hidden_size * 2,
|
|
self.config.hidden_size,
|
|
gather_output=True,
|
|
bias=False,
|
|
return_bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.fc",
|
|
)
|
|
|
|
self.layers = torch.nn.ModuleList(
|
|
Qwen3NextDecoderLayer(
|
|
vllm_config,
|
|
layer_type="full_attention",
|
|
prefix=f"{prefix}.layers.{idx}",
|
|
)
|
|
for idx in range(self.num_mtp_layers)
|
|
)
|
|
|
|
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
|
|
["hidden_states", "residual"], config.hidden_size
|
|
)
|
|
|
|
self.norm = Qwen3NextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.pre_fc_norm_hidden = Qwen3NextRMSNorm(
|
|
config.hidden_size, eps=config.rms_norm_eps
|
|
)
|
|
self.pre_fc_norm_embedding = Qwen3NextRMSNorm(
|
|
config.hidden_size, eps=config.rms_norm_eps
|
|
)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.embed_tokens(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
spec_step_idx: int = 0,
|
|
) -> torch.Tensor:
|
|
if get_pp_group().is_first_rank:
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.get_input_embeddings(input_ids)
|
|
assert hidden_states.shape[-1] == inputs_embeds.shape[-1]
|
|
inputs_embeds = self.pre_fc_norm_embedding(inputs_embeds)
|
|
hidden_states = self.pre_fc_norm_hidden(hidden_states)
|
|
hidden_states = torch.cat([inputs_embeds, hidden_states], dim=-1)
|
|
hidden_states = self.fc(hidden_states)
|
|
residual = None
|
|
else:
|
|
assert intermediate_tensors is not None
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
residual = intermediate_tensors["residual"]
|
|
|
|
current_step_idx = spec_step_idx % self.num_mtp_layers
|
|
hidden_states, residual = self.layers[current_step_idx](
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
residual=residual,
|
|
)
|
|
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors(
|
|
{"hidden_states": hidden_states, "residual": residual}
|
|
)
|
|
|
|
hidden_states, _ = self.norm(hidden_states, residual)
|
|
return hidden_states
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
("gate_up_proj", "gate_proj", 0),
|
|
("gate_up_proj", "up_proj", 1),
|
|
]
|
|
|
|
# Params for weights, fp8 weight scales, fp8 activation scales
|
|
# (param_name, weight_name, expert_id, shard_id)
|
|
expert_params_mapping = FusedMoE.make_expert_params_mapping(
|
|
ckpt_gate_proj_name="gate_proj",
|
|
ckpt_down_proj_name="down_proj",
|
|
ckpt_up_proj_name="up_proj",
|
|
num_experts=self.config.num_experts,
|
|
)
|
|
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
if "rotary_emb.inv_freq" in name:
|
|
continue
|
|
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
|
|
if "mlp.experts" in name:
|
|
continue
|
|
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
# Skip layers on other devices.
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
if name not in params_dict:
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
for mapping in expert_params_mapping:
|
|
param_name, weight_name, expert_id, shard_id = mapping
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip layers on other devices.
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
# Skip loading extra bias for GPTQ models.
|
|
if (
|
|
name.endswith(".bias") or name.endswith("_bias")
|
|
) and name not in params_dict:
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(
|
|
param,
|
|
loaded_weight,
|
|
name,
|
|
shard_id=shard_id,
|
|
expert_id=expert_id,
|
|
)
|
|
break
|
|
else:
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = getattr(
|
|
param, "weight_loader", default_weight_loader
|
|
)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
@support_torch_compile
|
|
class Qwen3NextMTP(nn.Module, SupportsPP, QwenNextMixtureOfExperts):
|
|
packed_modules_mapping = {
|
|
"qkv_proj": [
|
|
"q_proj",
|
|
"k_proj",
|
|
"v_proj",
|
|
],
|
|
"gate_up_proj": ["up_proj", "down_proj"],
|
|
}
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
config = vllm_config.model_config.hf_config
|
|
self.vllm_config = vllm_config
|
|
cache_config = vllm_config.cache_config
|
|
assert not cache_config.enable_prefix_caching, (
|
|
"Qwen3NextMTP currently does not support prefix caching"
|
|
)
|
|
|
|
self.quant_config = vllm_config.quant_config
|
|
|
|
super().__init__()
|
|
self.config = config
|
|
self.model = Qwen3NextMultiTokenPredictor(
|
|
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "mtp")
|
|
)
|
|
|
|
self.lm_head = ParallelLMHead(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
prefix=maybe_prefix(prefix, "lm_head"),
|
|
)
|
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
|
self.make_empty_intermediate_tensors = (
|
|
self.model.make_empty_intermediate_tensors
|
|
)
|
|
self.set_moe_parameters()
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.model.get_input_embeddings(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
**kwargs: object,
|
|
):
|
|
hidden_states = self.model(
|
|
input_ids, positions, hidden_states, intermediate_tensors, inputs_embeds
|
|
)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
spec_step_idx: int = 0,
|
|
) -> torch.Tensor | None:
|
|
return self.logits_processor(self.lm_head, hidden_states)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
shared_weight_names = ["embed_tokens", "lm_head"]
|
|
|
|
def remap_weight_names(weights):
|
|
for name, weight in weights:
|
|
if name.startswith("mtp."):
|
|
name = name.replace("mtp.", "model.")
|
|
elif not any(key in name for key in shared_weight_names):
|
|
continue
|
|
yield name, weight
|
|
|
|
loader = AutoWeightsLoader(self)
|
|
return loader.load_weights(remap_weight_names(weights))
|