mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 02:05:01 +08:00
100 lines
2.9 KiB
Python
100 lines
2.9 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
import pytest
|
|
import torch
|
|
from nvfp4_utils import FLOAT4_E2M1_MAX, FLOAT8_E4M3_MAX, dequantize_nvfp4_to_dtype
|
|
|
|
from vllm import _custom_ops as ops
|
|
from vllm.platforms import current_platform
|
|
|
|
if not current_platform.has_device_capability(100):
|
|
pytest.skip(
|
|
reason="Nvfp4 Requires compute capability of 10 or above.",
|
|
allow_module_level=True,
|
|
)
|
|
|
|
DTYPES = [torch.float16, torch.bfloat16]
|
|
# m, n, k
|
|
SHAPES = [(128, 128, 64), (128, 128, 128), (256, 128, 64), (128, 256, 128)]
|
|
PAD_SHAPES = [(150, 128, 64), (128, 128, 96)]
|
|
SHAPES.extend(PAD_SHAPES)
|
|
|
|
SEEDS = [42]
|
|
CUDA_DEVICES = ["cuda:0"]
|
|
|
|
|
|
def get_ref_results(
|
|
a_fp4,
|
|
b_fp4,
|
|
a_sf,
|
|
b_sf,
|
|
a_global_scale,
|
|
b_global_scale,
|
|
m,
|
|
n,
|
|
dtype,
|
|
block_size,
|
|
device,
|
|
):
|
|
_, m_k = a_fp4.shape
|
|
_, n_k = b_fp4.shape
|
|
assert m_k == n_k
|
|
a_in_dtype = dequantize_nvfp4_to_dtype(
|
|
a_fp4, a_sf, a_global_scale, dtype=dtype, device=device, block_size=block_size
|
|
)
|
|
b_in_dtype = dequantize_nvfp4_to_dtype(
|
|
b_fp4, b_sf, b_global_scale, dtype=dtype, device=device, block_size=block_size
|
|
)
|
|
return torch.matmul(a_in_dtype, b_in_dtype.t())
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
@pytest.mark.parametrize("shape", SHAPES)
|
|
@pytest.mark.parametrize("seed", SEEDS)
|
|
@pytest.mark.parametrize("device", CUDA_DEVICES)
|
|
@torch.inference_mode()
|
|
def test_nvfp4_gemm(
|
|
dtype: torch.dtype,
|
|
shape: tuple[int, int, int],
|
|
seed: int,
|
|
device: str,
|
|
) -> None:
|
|
current_platform.seed_everything(seed)
|
|
m, n, packed_k = shape
|
|
k = packed_k * 2
|
|
block_size = 16
|
|
a_dtype = torch.randn((m, k), dtype=dtype, device=device)
|
|
b_dtype = torch.randn((n, k), dtype=dtype, device=device)
|
|
|
|
a_global_scale = (
|
|
(FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX) / torch.amax(a_dtype.flatten(), dim=-1)
|
|
).to(torch.float32)
|
|
b_global_scale = (
|
|
(FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX) / torch.amax(b_dtype.flatten(), dim=-1)
|
|
).to(torch.float32)
|
|
alpha = 1.0 / (a_global_scale * b_global_scale)
|
|
# ops.scaled_fp4_quant returns swizzled scales, while weights
|
|
# from checkpoints are in linear scales.
|
|
a_fp4, a_scale_interleaved = ops.scaled_fp4_quant(a_dtype, a_global_scale)
|
|
b_fp4, b_scale_interleaved = ops.scaled_fp4_quant(b_dtype, b_global_scale)
|
|
|
|
# get_ref_results unswizzles the scales internally.
|
|
expected_out = get_ref_results(
|
|
a_fp4,
|
|
b_fp4,
|
|
a_scale_interleaved,
|
|
b_scale_interleaved,
|
|
a_global_scale,
|
|
b_global_scale,
|
|
m,
|
|
n,
|
|
dtype,
|
|
block_size,
|
|
device,
|
|
)
|
|
out = ops.cutlass_scaled_fp4_mm(
|
|
a_fp4, b_fp4, a_scale_interleaved, b_scale_interleaved, alpha, dtype
|
|
)
|
|
|
|
torch.testing.assert_close(out, expected_out.to(dtype=dtype), atol=1e-1, rtol=1e-1)
|