vllm/tests/entrypoints/openai/test_metrics.py
Mark McLoughlin 2417798471
[Metrics] Deprecate TPOT in favor of ITL (#24110)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-09-02 18:10:10 +00:00

442 lines
16 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import asyncio
import subprocess
import sys
import tempfile
import time
from http import HTTPStatus
import openai
import pytest
import pytest_asyncio
import requests
from prometheus_client.parser import text_string_to_metric_families
from transformers import AutoTokenizer
from vllm import version
from ...utils import RemoteOpenAIServer
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
PREV_MINOR_VERSION = version._prev_minor_version()
@pytest.fixture(scope="module", params=[True, False])
def use_v1(request):
# Module-scoped variant of run_with_both_engines
#
# Use this fixture to run a test with both v0 and v1, and
# also to conditionalize the test logic e.g.
#
# def test_metrics_exist(use_v1, server, client):
# ...
# expected = EXPECTED_V1_METRICS if use_v1 else EXPECTED_METRICS
# for metric in expected:
# assert metric in response.text
#
# @skip_v1 wouldn't work here because this is a module-level
# fixture - per-function decorators would have no effect
yield request.param
@pytest.fixture(scope="module")
def default_server_args():
return [
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
"--max-model-len",
"1024",
"--enforce-eager",
"--max-num-seqs",
"128",
]
@pytest.fixture(scope="module",
params=[
"",
"--enable-chunked-prefill",
"--disable-frontend-multiprocessing",
f"--show-hidden-metrics-for-version={PREV_MINOR_VERSION}",
])
def server(use_v1, default_server_args, request):
if request.param:
default_server_args.append(request.param)
env_dict = dict(VLLM_USE_V1='1' if use_v1 else '0')
with RemoteOpenAIServer(MODEL_NAME, default_server_args,
env_dict=env_dict) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as cl:
yield cl
_PROMPT = "Hello my name is Robert and I love magic"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
_TOKENIZED_PROMPT = tokenizer(_PROMPT)["input_ids"]
_NUM_REQUESTS = 10
_NUM_PROMPT_TOKENS_PER_REQUEST = len(_TOKENIZED_PROMPT)
_NUM_GENERATION_TOKENS_PER_REQUEST = 10
# {metric_family: [(suffix, expected_value)]}
EXPECTED_VALUES = {
"vllm:time_to_first_token_seconds": [("_count", _NUM_REQUESTS)],
"vllm:time_per_output_token_seconds":
[("_count", _NUM_REQUESTS * (_NUM_GENERATION_TOKENS_PER_REQUEST - 1))],
"vllm:e2e_request_latency_seconds": [("_count", _NUM_REQUESTS)],
"vllm:request_queue_time_seconds": [("_count", _NUM_REQUESTS)],
"vllm:request_inference_time_seconds": [("_count", _NUM_REQUESTS)],
"vllm:request_prefill_time_seconds": [("_count", _NUM_REQUESTS)],
"vllm:request_decode_time_seconds": [("_count", _NUM_REQUESTS)],
"vllm:request_prompt_tokens":
[("_sum", _NUM_REQUESTS * _NUM_PROMPT_TOKENS_PER_REQUEST),
("_count", _NUM_REQUESTS)],
"vllm:request_generation_tokens":
[("_sum", _NUM_REQUESTS * _NUM_GENERATION_TOKENS_PER_REQUEST),
("_count", _NUM_REQUESTS)],
"vllm:request_params_n": [("_count", _NUM_REQUESTS)],
"vllm:request_params_max_tokens": [
("_sum", _NUM_REQUESTS * _NUM_GENERATION_TOKENS_PER_REQUEST),
("_count", _NUM_REQUESTS)
],
"vllm:iteration_tokens_total":
[("_sum", _NUM_REQUESTS *
(_NUM_PROMPT_TOKENS_PER_REQUEST + _NUM_GENERATION_TOKENS_PER_REQUEST)),
("_count", _NUM_REQUESTS * _NUM_GENERATION_TOKENS_PER_REQUEST)],
"vllm:prompt_tokens": [("_total",
_NUM_REQUESTS * _NUM_PROMPT_TOKENS_PER_REQUEST)],
"vllm:generation_tokens": [
("_total", _NUM_REQUESTS * _NUM_PROMPT_TOKENS_PER_REQUEST)
],
"vllm:request_success": [("_total", _NUM_REQUESTS)],
}
@pytest.mark.asyncio
async def test_metrics_counts(server: RemoteOpenAIServer,
client: openai.AsyncClient, use_v1: bool):
for _ in range(_NUM_REQUESTS):
# sending a request triggers the metrics to be logged.
await client.completions.create(
model=MODEL_NAME,
prompt=_TOKENIZED_PROMPT,
max_tokens=_NUM_GENERATION_TOKENS_PER_REQUEST)
response = requests.get(server.url_for("metrics"))
print(response.text)
assert response.status_code == HTTPStatus.OK
# Loop over all expected metric_families
for metric_family, suffix_values_list in EXPECTED_VALUES.items():
if ((use_v1 and metric_family not in EXPECTED_METRICS_V1)
or (not server.show_hidden_metrics
and metric_family in HIDDEN_DEPRECATED_METRICS)):
continue
found_metric = False
# Check to see if the metric_family is found in the prom endpoint.
for family in text_string_to_metric_families(response.text):
if family.name == metric_family:
found_metric = True
# Check that each suffix is found in the prom endpoint.
for suffix, expected_value in suffix_values_list:
metric_name_w_suffix = f"{metric_family}{suffix}"
found_suffix = False
for sample in family.samples:
if sample.name == metric_name_w_suffix:
found_suffix = True
# For each suffix, value sure the value matches
# what we expect.
assert sample.value == expected_value, (
f"{metric_name_w_suffix} expected value of "
f"{expected_value} did not match found value "
f"{sample.value}")
break
assert found_suffix, (
f"Did not find {metric_name_w_suffix} in prom endpoint"
)
break
assert found_metric, (f"Did not find {metric_family} in prom endpoint")
EXPECTED_METRICS = [
"vllm:num_requests_running",
"vllm:num_requests_waiting",
"vllm:gpu_cache_usage_perc",
"vllm:time_to_first_token_seconds_sum",
"vllm:time_to_first_token_seconds_bucket",
"vllm:time_to_first_token_seconds_count",
"vllm:time_per_output_token_seconds_sum",
"vllm:time_per_output_token_seconds_bucket",
"vllm:time_per_output_token_seconds_count",
"vllm:e2e_request_latency_seconds_sum",
"vllm:e2e_request_latency_seconds_bucket",
"vllm:e2e_request_latency_seconds_count",
"vllm:request_queue_time_seconds_sum",
"vllm:request_queue_time_seconds_bucket",
"vllm:request_queue_time_seconds_count",
"vllm:request_inference_time_seconds_sum",
"vllm:request_inference_time_seconds_bucket",
"vllm:request_inference_time_seconds_count",
"vllm:request_prefill_time_seconds_sum",
"vllm:request_prefill_time_seconds_bucket",
"vllm:request_prefill_time_seconds_count",
"vllm:request_decode_time_seconds_sum",
"vllm:request_decode_time_seconds_bucket",
"vllm:request_decode_time_seconds_count",
"vllm:request_prompt_tokens_sum",
"vllm:request_prompt_tokens_bucket",
"vllm:request_prompt_tokens_count",
"vllm:request_generation_tokens_sum",
"vllm:request_generation_tokens_bucket",
"vllm:request_generation_tokens_count",
"vllm:request_params_n_sum",
"vllm:request_params_n_bucket",
"vllm:request_params_n_count",
"vllm:request_params_max_tokens_sum",
"vllm:request_params_max_tokens_bucket",
"vllm:request_params_max_tokens_count",
"vllm:iteration_tokens_total",
"vllm:num_preemptions_total",
"vllm:prompt_tokens_total",
"vllm:generation_tokens_total",
"vllm:request_success_total",
"vllm:cache_config_info",
# labels in cache_config_info
"block_size",
"cache_dtype",
"cpu_offload_gb",
"enable_prefix_caching",
"gpu_memory_utilization",
"num_cpu_blocks",
"num_gpu_blocks",
"num_gpu_blocks_override",
"sliding_window",
"swap_space_bytes",
]
EXPECTED_METRICS_V1 = [
"vllm:num_requests_running",
"vllm:num_requests_waiting",
"vllm:gpu_cache_usage_perc",
"vllm:gpu_prefix_cache_queries",
"vllm:gpu_prefix_cache_hits",
"vllm:num_preemptions_total",
"vllm:prompt_tokens_total",
"vllm:generation_tokens_total",
"vllm:iteration_tokens_total",
"vllm:cache_config_info",
"vllm:request_success_total",
"vllm:request_prompt_tokens_sum",
"vllm:request_prompt_tokens_bucket",
"vllm:request_prompt_tokens_count",
"vllm:request_generation_tokens_sum",
"vllm:request_generation_tokens_bucket",
"vllm:request_generation_tokens_count",
"vllm:request_params_n_sum",
"vllm:request_params_n_bucket",
"vllm:request_params_n_count",
"vllm:request_params_max_tokens_sum",
"vllm:request_params_max_tokens_bucket",
"vllm:request_params_max_tokens_count",
"vllm:time_per_output_token_seconds_sum",
"vllm:time_per_output_token_seconds_bucket",
"vllm:time_per_output_token_seconds_count",
"vllm:time_to_first_token_seconds_sum",
"vllm:time_to_first_token_seconds_bucket",
"vllm:time_to_first_token_seconds_count",
"vllm:inter_token_latency_seconds_sum",
"vllm:inter_token_latency_seconds_bucket",
"vllm:inter_token_latency_seconds_count",
"vllm:e2e_request_latency_seconds_sum",
"vllm:e2e_request_latency_seconds_bucket",
"vllm:e2e_request_latency_seconds_count",
"vllm:request_queue_time_seconds_sum",
"vllm:request_queue_time_seconds_bucket",
"vllm:request_queue_time_seconds_count",
"vllm:request_inference_time_seconds_sum",
"vllm:request_inference_time_seconds_bucket",
"vllm:request_inference_time_seconds_count",
"vllm:request_prefill_time_seconds_sum",
"vllm:request_prefill_time_seconds_bucket",
"vllm:request_prefill_time_seconds_count",
"vllm:request_decode_time_seconds_sum",
"vllm:request_decode_time_seconds_bucket",
"vllm:request_decode_time_seconds_count",
]
HIDDEN_DEPRECATED_METRICS: list[str] = [
"vllm:time_per_output_token_seconds_sum",
"vllm:time_per_output_token_seconds_bucket",
"vllm:time_per_output_token_seconds_count",
]
@pytest.mark.asyncio
async def test_metrics_exist(server: RemoteOpenAIServer,
client: openai.AsyncClient, use_v1: bool):
# sending a request triggers the metrics to be logged.
await client.completions.create(model=MODEL_NAME,
prompt="Hello, my name is",
max_tokens=5,
temperature=0.0)
response = requests.get(server.url_for("metrics"))
assert response.status_code == HTTPStatus.OK
for metric in (EXPECTED_METRICS_V1 if use_v1 else EXPECTED_METRICS):
if (metric in HIDDEN_DEPRECATED_METRICS
and not server.show_hidden_metrics):
continue
assert metric in response.text
@pytest.mark.asyncio
async def test_abort_metrics_reset(server: RemoteOpenAIServer,
client: openai.AsyncClient, use_v1: bool):
running_requests, waiting_requests, kv_cache_usage = (
_get_running_metrics_from_api(server))
# Expect no running requests or kvcache usage
assert running_requests == 0
assert waiting_requests == 0
assert kv_cache_usage == 0.0
# Start some long-running requests that we can abort
tasks = []
for _ in range(3):
task = asyncio.create_task(
client.completions.create(
model=MODEL_NAME,
prompt=_TOKENIZED_PROMPT,
max_tokens=100, # Long generation to give time to abort
temperature=0.0))
tasks.append(task)
# Wait a bit for requests to start processing
await asyncio.sleep(0.5)
# Check that we have running requests
running_requests, waiting_requests, kv_cache_usage = (
_get_running_metrics_from_api(server))
# Expect running requests and kvcache usage
assert running_requests > 0
assert kv_cache_usage > 0
# Cancel all tasks to abort the requests
for task in tasks:
task.cancel()
# Wait for cancellations to be processed
await asyncio.sleep(1.0)
# Check that metrics have reset to zero
response = requests.get(server.url_for("metrics"))
assert response.status_code == HTTPStatus.OK
# Verify running and waiting requests counts and KV cache usage are zero
running_requests_after, waiting_requests_after, kv_cache_usage_after = (
_get_running_metrics_from_api(server))
assert running_requests_after == 0,\
(f"Expected 0 running requests after abort, got "
f"{running_requests_after}")
assert waiting_requests_after == 0,\
(f"Expected 0 waiting requests after abort, got "
f"{waiting_requests_after}")
assert kv_cache_usage_after == 0,\
(f"Expected 0% KV cache usage after abort, got "
f"{kv_cache_usage_after}")
def _get_running_metrics_from_api(server: RemoteOpenAIServer):
"""Return (running_count, waiting_count, kv_cache_usage)"""
response = requests.get(server.url_for("metrics"))
assert response.status_code == HTTPStatus.OK
# Verify running and waiting requests counts and KV cache usage are zero
running_requests, waiting_requests, kv_cache_usage = None, None, None
for family in text_string_to_metric_families(response.text):
if family.name == "vllm:num_requests_running":
for sample in family.samples:
if sample.name == "vllm:num_requests_running":
running_requests = sample.value
break
elif family.name == "vllm:num_requests_waiting":
for sample in family.samples:
if sample.name == "vllm:num_requests_waiting":
waiting_requests = sample.value
break
elif family.name == "vllm:gpu_cache_usage_perc":
for sample in family.samples:
if sample.name == "vllm:gpu_cache_usage_perc":
kv_cache_usage = sample.value
break
assert running_requests is not None
assert waiting_requests is not None
assert kv_cache_usage is not None
return running_requests, waiting_requests, kv_cache_usage
def test_metrics_exist_run_batch(use_v1: bool):
input_batch = """{"custom_id": "request-0", "method": "POST", "url": "/v1/embeddings", "body": {"model": "intfloat/multilingual-e5-small", "input": "You are a helpful assistant."}}""" # noqa: E501
base_url = "0.0.0.0"
port = "8001"
server_url = f"http://{base_url}:{port}"
with tempfile.NamedTemporaryFile(
"w") as input_file, tempfile.NamedTemporaryFile(
"r") as output_file:
input_file.write(input_batch)
input_file.flush()
proc = subprocess.Popen([
sys.executable,
"-m",
"vllm.entrypoints.openai.run_batch",
"-i",
input_file.name,
"-o",
output_file.name,
"--model",
"intfloat/multilingual-e5-small",
"--enable-metrics",
"--url",
base_url,
"--port",
port,
],
env={"VLLM_USE_V1": "1" if use_v1 else "0"})
def is_server_up(url):
try:
response = requests.get(url)
return response.status_code == 200
except requests.ConnectionError:
return False
while not is_server_up(server_url):
time.sleep(1)
response = requests.get(server_url + "/metrics")
assert response.status_code == HTTPStatus.OK
proc.wait()