mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-12 08:35:01 +08:00
# Adds support for `transformers` as a backend Following https://github.com/huggingface/transformers/pull/35235, a bunch of models should already be supported, we are ramping up support for more models. Thanks @Isotr0py for the TP support, and @hmellor for his help as well! This includes: - `trust_remote_code=True` support: any model on the hub, if it implements attention the correct way can be natively supported!! - tensor parallel support --------- Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com> Signed-off-by: Isotr0py <2037008807@qq.com> Co-authored-by: Isotr0py <41363108+Isotr0py@users.noreply.github.com> Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com> Co-authored-by: Isotr0py <2037008807@qq.com> Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com> Co-authored-by: Michael Goin <mgoin64@gmail.com> Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
76 lines
2.2 KiB
Python
76 lines
2.2 KiB
Python
"""Test the functionality of the Transformers backend.
|
|
|
|
Run `pytest tests/models/test_transformers.py`.
|
|
"""
|
|
from contextlib import nullcontext
|
|
from typing import Type
|
|
|
|
import pytest
|
|
|
|
from ..conftest import HfRunner, VllmRunner
|
|
from ..utils import multi_gpu_test
|
|
from .utils import check_logprobs_close
|
|
|
|
|
|
def check_implementation(
|
|
hf_runner: Type[HfRunner],
|
|
vllm_runner: Type[VllmRunner],
|
|
example_prompts: list[str],
|
|
model: str,
|
|
**kwargs,
|
|
):
|
|
max_tokens = 32
|
|
num_logprobs = 5
|
|
|
|
with vllm_runner(model, **kwargs) as vllm_model:
|
|
vllm_outputs = vllm_model.generate_greedy_logprobs(
|
|
example_prompts, max_tokens, num_logprobs)
|
|
|
|
with hf_runner(model) as hf_model:
|
|
hf_outputs = hf_model.generate_greedy_logprobs_limit(
|
|
example_prompts, max_tokens, num_logprobs)
|
|
|
|
check_logprobs_close(
|
|
outputs_0_lst=hf_outputs,
|
|
outputs_1_lst=vllm_outputs,
|
|
name_0="hf",
|
|
name_1="vllm",
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model,model_impl",
|
|
[
|
|
("meta-llama/Llama-3.2-1B-Instruct", "transformers"),
|
|
("openai-community/gpt2", "transformers"),
|
|
("ArthurZ/Ilama-3.2-1B", "auto"), # CUSTOM CODE
|
|
("meta-llama/Llama-3.2-1B-Instruct", "auto"),
|
|
]) # trust_remote_code=True by default
|
|
def test_models(hf_runner, vllm_runner, example_prompts, model,
|
|
model_impl) -> None:
|
|
|
|
maybe_raises = nullcontext()
|
|
if model == "openai-community/gpt2" and model_impl == "transformers":
|
|
# Model is not backend compatible
|
|
maybe_raises = pytest.raises(
|
|
ValueError,
|
|
match="The Transformers implementation.*not compatible with vLLM")
|
|
|
|
with maybe_raises:
|
|
check_implementation(hf_runner,
|
|
vllm_runner,
|
|
example_prompts,
|
|
model,
|
|
model_impl=model_impl)
|
|
|
|
|
|
@multi_gpu_test(num_gpus=2)
|
|
def test_distributed(
|
|
hf_runner,
|
|
vllm_runner,
|
|
example_prompts,
|
|
):
|
|
kwargs = {"model_impl": "transformers", "tensor_parallel_size": 2}
|
|
check_implementation(hf_runner, vllm_runner, example_prompts,
|
|
"meta-llama/Llama-3.2-1B-Instruct", **kwargs)
|