vllm/vllm/v1/worker/cpu_model_runner.py
2025-07-19 05:13:55 -07:00

89 lines
3.3 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from contextlib import contextmanager
from typing import Any
import torch
from vllm.config import VllmConfig
from vllm.logger import init_logger
from vllm.model_executor.model_loader import get_model
from vllm.v1.worker.gpu_model_runner import GPUModelRunner
logger = init_logger(__name__)
class CPUModelRunner(GPUModelRunner):
def __init__(self, vllm_config: VllmConfig, device: torch.device):
super().__init__(vllm_config, device)
assert device == torch.device("cpu")
assert self.speculative_config is None, "spec decode is not supported."
self.use_cuda_graph = False
self.cascade_attn_enabled = False
self._postprocess_tenosrs()
def _postprocess_tenosrs(self) -> None:
# Note: replace device tensors with cpu tensors
def replace_tensor(obj: Any, cpu_attr_name: str,
device_attr_name) -> None:
cpu_tensor = getattr(obj, cpu_attr_name, None)
device_tensor = getattr(obj, device_attr_name, None)
if cpu_tensor is not None and device_tensor is not None:
assert isinstance(cpu_tensor, torch.Tensor)
assert isinstance(device_tensor, torch.Tensor)
setattr(obj, device_attr_name, cpu_tensor)
for k, v in vars(self).items():
if k.endswith("_cpu") and isinstance(v, torch.Tensor):
replace_tensor(self, k, k[:-4])
for k, v in vars(self.input_batch).items():
if k.endswith("_cpu_tensor") and isinstance(v, torch.Tensor):
replace_tensor(self.input_batch, k, k[:-11])
for block_table in self.input_batch.block_table.block_tables:
for k, v in vars(block_table).items():
if k.endswith("_cpu") and isinstance(v, torch.Tensor):
replace_tensor(block_table, k, k[:-4])
def load_model(self, eep_scale_up: bool = False) -> None:
logger.info("Starting to load model %s...", self.model_config.model)
self.model = get_model(vllm_config=self.vllm_config)
if self.lora_config:
self.model = self.load_lora_model(self.model, self.model_config,
self.scheduler_config,
self.lora_config, self.device)
def warming_up_model(self) -> None:
logger.info("Warming up model for the compilation...")
# Only generate graph for the generic shape
with _set_global_compilation_settings(self.vllm_config):
self._dummy_run(max(16, self.max_num_reqs))
logger.info("Warming up done.")
def _init_device_properties(self) -> None:
pass
def _sync_device(self) -> None:
pass
@contextmanager
def _set_global_compilation_settings(config: VllmConfig):
import torch._inductor.config
inductor_config = config.compilation_config.inductor_compile_config
try:
# Note: The MKLDNN and CPPGEMM backend requires freezing parameters.
freezing_value = torch._inductor.config.freezing
if inductor_config.get("max_autotune", False):
torch._inductor.config.freezing = True
yield
finally:
torch._inductor.config.freezing = freezing_value