mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-19 08:04:34 +08:00
89 lines
3.3 KiB
Python
89 lines
3.3 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
from contextlib import contextmanager
|
|
from typing import Any
|
|
|
|
import torch
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.model_loader import get_model
|
|
from vllm.v1.worker.gpu_model_runner import GPUModelRunner
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class CPUModelRunner(GPUModelRunner):
|
|
|
|
def __init__(self, vllm_config: VllmConfig, device: torch.device):
|
|
super().__init__(vllm_config, device)
|
|
|
|
assert device == torch.device("cpu")
|
|
assert self.speculative_config is None, "spec decode is not supported."
|
|
|
|
self.use_cuda_graph = False
|
|
self.cascade_attn_enabled = False
|
|
|
|
self._postprocess_tenosrs()
|
|
|
|
def _postprocess_tenosrs(self) -> None:
|
|
# Note: replace device tensors with cpu tensors
|
|
def replace_tensor(obj: Any, cpu_attr_name: str,
|
|
device_attr_name) -> None:
|
|
cpu_tensor = getattr(obj, cpu_attr_name, None)
|
|
device_tensor = getattr(obj, device_attr_name, None)
|
|
if cpu_tensor is not None and device_tensor is not None:
|
|
assert isinstance(cpu_tensor, torch.Tensor)
|
|
assert isinstance(device_tensor, torch.Tensor)
|
|
setattr(obj, device_attr_name, cpu_tensor)
|
|
|
|
for k, v in vars(self).items():
|
|
if k.endswith("_cpu") and isinstance(v, torch.Tensor):
|
|
replace_tensor(self, k, k[:-4])
|
|
|
|
for k, v in vars(self.input_batch).items():
|
|
if k.endswith("_cpu_tensor") and isinstance(v, torch.Tensor):
|
|
replace_tensor(self.input_batch, k, k[:-11])
|
|
|
|
for block_table in self.input_batch.block_table.block_tables:
|
|
for k, v in vars(block_table).items():
|
|
if k.endswith("_cpu") and isinstance(v, torch.Tensor):
|
|
replace_tensor(block_table, k, k[:-4])
|
|
|
|
def load_model(self, eep_scale_up: bool = False) -> None:
|
|
logger.info("Starting to load model %s...", self.model_config.model)
|
|
self.model = get_model(vllm_config=self.vllm_config)
|
|
|
|
if self.lora_config:
|
|
self.model = self.load_lora_model(self.model, self.model_config,
|
|
self.scheduler_config,
|
|
self.lora_config, self.device)
|
|
|
|
def warming_up_model(self) -> None:
|
|
logger.info("Warming up model for the compilation...")
|
|
# Only generate graph for the generic shape
|
|
with _set_global_compilation_settings(self.vllm_config):
|
|
self._dummy_run(max(16, self.max_num_reqs))
|
|
logger.info("Warming up done.")
|
|
|
|
def _init_device_properties(self) -> None:
|
|
pass
|
|
|
|
def _sync_device(self) -> None:
|
|
pass
|
|
|
|
|
|
@contextmanager
|
|
def _set_global_compilation_settings(config: VllmConfig):
|
|
import torch._inductor.config
|
|
|
|
inductor_config = config.compilation_config.inductor_compile_config
|
|
try:
|
|
# Note: The MKLDNN and CPPGEMM backend requires freezing parameters.
|
|
freezing_value = torch._inductor.config.freezing
|
|
if inductor_config.get("max_autotune", False):
|
|
torch._inductor.config.freezing = True
|
|
yield
|
|
finally:
|
|
torch._inductor.config.freezing = freezing_value
|