vllm/vllm/engine/output_processor/stop_checker.py
22quinn c1c7dbbeeb
[Bugfix][Core] Prevent token lengths exceeding max_model_len in V0 (#19348)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-06-09 23:01:29 +08:00

132 lines
5.0 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Callable, List, Optional, Tuple
from vllm.lora.request import LoRARequest
from vllm.sampling_params import SamplingParams
from vllm.sequence import Sequence, SequenceStatus
from vllm.transformers_utils.tokenizer import AnyTokenizer
class StopChecker:
"""LLMEngine helper class which separates out the logic involving stop
checking. This checks things such as: whether the eos token was emitted,
whether the max_tokens has been consumed, whether a stop string has been
emitted, or if we have exceeded the max model len.
"""
def __init__(self, max_model_len: int,
get_tokenizer_for_seq: Callable[[Sequence], AnyTokenizer]):
# Do not use it directly, but use `self._get_max_model_len`.
self._max_model_len = max_model_len
self.get_tokenizer_for_seq = get_tokenizer_for_seq
def _get_max_model_len(self, lora_req: Optional[LoRARequest]):
if lora_req and lora_req.long_lora_max_len:
return lora_req.long_lora_max_len
else:
return self._max_model_len
def maybe_stop_sequence(
self,
seq: Sequence,
new_char_count: int,
sampling_params: SamplingParams,
lora_req: Optional[LoRARequest] = None,
) -> None:
"""Stop the finished sequences.
new_char_count is the number of chars added to the
sequence's output text for the newly generated token
"""
# Check if the minimum number of tokens has been generated yet;
# skip the stop string/token checks if not
if seq.get_output_len() < sampling_params.min_tokens:
return
# Check if the sequence has generated the EOS token.
if ((not sampling_params.ignore_eos)
and seq.get_last_token_id() == seq.eos_token_id):
# Remove the last EOS token unless explicitly specified
# This prevents unintended exposure of the EOS token
if new_char_count and (
not sampling_params.include_stop_str_in_output):
seq.output_text = seq.output_text[:-new_char_count]
seq.status = SequenceStatus.FINISHED_STOPPED
return
# Check if a stop token was encountered.
# This assumes a single token produced per step.
last_token_id = seq.get_last_token_id()
if last_token_id in (sampling_params.stop_token_ids or ()):
if new_char_count and (
not sampling_params.include_stop_str_in_output):
# Remove last token
seq.output_text = seq.output_text[:-new_char_count]
seq.status = SequenceStatus.FINISHED_STOPPED
seq.stop_reason = last_token_id
return
# Check if any stop strings are matched.
stop = self.check_stop_strings(
seq.output_text, new_char_count, sampling_params.stop,
sampling_params.include_stop_str_in_output)
if stop is not None:
stop_str, truncate_to = stop
if truncate_to != -1:
seq.output_text = seq.output_text[:truncate_to]
seq.status = SequenceStatus.FINISHED_STOPPED
seq.stop_reason = stop_str
return
# Check if the sequence has reached max_model_len.
if seq.get_len() >= self._get_max_model_len(lora_req):
seq.status = SequenceStatus.FINISHED_LENGTH_CAPPED
return
# Check if the sequence has reached max_tokens.
if seq.get_output_len() == sampling_params.max_tokens:
seq.status = SequenceStatus.FINISHED_LENGTH_CAPPED
return
@staticmethod
def check_stop_strings(
output_text: str,
new_char_count: int,
stop: List[str],
include_in_output: bool,
) -> Optional[Tuple[str, int]]:
"""Check if any stop strings are matched and truncate sequence
output text accordingly.
Returns tuple (stop_string, offset) if matched or else None.
Where stop_string is the matched stop string and offset is the
length to which output_text should be truncated, or -1 for no
truncation.
"""
if not new_char_count or not stop:
return None
for stop_str in stop:
stop_string_len = len(stop_str)
# Avoid searching already-searched text.
stop_index = output_text.find(stop_str,
1 - new_char_count - stop_string_len)
if stop_index == -1:
continue
if include_in_output:
# Truncate to end of stop string.
stop_index += stop_string_len
if stop_index >= len(output_text):
# No truncation required.
return stop_str, -1
# Truncate the output text to either the beginning
# or end of the stop string.
return stop_str, stop_index
return None