vllm/tests/kernels/moe/parallel_utils.py
Varun Sundar Rabindranath 53fa457391
[Misc] Add unit tests for MoE ModularKernel combinations + Profiling utility (#20449)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
2025-07-11 07:51:46 -07:00

186 lines
5.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
DeepEP test utilities
"""
import dataclasses
import os
import traceback
from typing import Callable, Optional
import torch
from torch.distributed import ProcessGroup
from torch.multiprocessing import (
spawn) # pyright: ignore[reportPrivateImportUsage]
from typing_extensions import Concatenate, ParamSpec
from vllm.utils import get_open_port, has_deep_ep
if has_deep_ep():
from vllm.model_executor.layers.fused_moe.deepep_ht_prepare_finalize import ( # noqa: E501
DeepEPHTPrepareAndFinalize)
from vllm.model_executor.layers.fused_moe.deepep_ll_prepare_finalize import ( # noqa: E501
DeepEPLLPrepareAndFinalize)
## Parallel Processes Utils
P = ParamSpec("P")
@dataclasses.dataclass
class ProcessGroupInfo:
world_size: int
world_local_size: int
rank: int
node_rank: int
local_rank: int
device: torch.device
def _worker_parallel_launch(
local_rank: int,
world_size: int,
world_local_size: int,
node_rank: int,
init_method: str,
worker: Callable[Concatenate[ProcessGroupInfo, P], None],
*args: P.args,
**kwargs: P.kwargs,
) -> None:
rank = node_rank * world_local_size + local_rank
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
torch.distributed.init_process_group(
backend="cpu:gloo,cuda:nccl",
init_method=init_method,
rank=rank,
world_size=world_size,
device_id=device,
)
barrier = torch.tensor([rank], device=device)
torch.distributed.all_reduce(barrier)
try:
worker(
ProcessGroupInfo(
world_size=world_size,
world_local_size=world_local_size,
rank=rank,
node_rank=node_rank,
local_rank=local_rank,
device=device,
),
*args,
**kwargs,
)
except Exception as ex:
print(ex)
traceback.print_exc()
raise
finally:
torch.distributed.destroy_process_group()
def parallel_launch(
world_size: int,
worker: Callable[Concatenate[ProcessGroupInfo, P], None],
*args: P.args,
**kwargs: P.kwargs,
) -> None:
assert not kwargs
spawn(
_worker_parallel_launch,
args=(
world_size,
world_size,
0,
f"tcp://{os.getenv('LOCALHOST', 'localhost')}:{get_open_port()}",
worker,
) + args,
nprocs=world_size,
join=True,
)
## DeepEP specific utils
@dataclasses.dataclass
class DeepEPHTArgs:
num_local_experts: int
@dataclasses.dataclass
class DeepEPLLArgs:
max_tokens_per_rank: int
hidden_size: int
num_experts: int
use_fp8_dispatch: bool
def make_deepep_ht_a2a(pg: ProcessGroup,
pgi: ProcessGroupInfo,
dp_size: int,
ht_args: DeepEPHTArgs,
q_dtype: Optional[torch.dtype] = None,
block_shape: Optional[list[int]] = None):
import deep_ep
# high throughput a2a
num_nvl_bytes = 1024 * 1024 * 1024 # 1GB
num_rdma_bytes, low_latency_mode, num_qps_per_rank = 0, False, 1
buffer = deep_ep.Buffer(group=pg,
num_nvl_bytes=num_nvl_bytes,
num_rdma_bytes=num_rdma_bytes,
low_latency_mode=low_latency_mode,
num_qps_per_rank=num_qps_per_rank)
return DeepEPHTPrepareAndFinalize(buffer=buffer,
num_dispatchers=pgi.world_size,
dp_size=dp_size,
rank_expert_offset=pgi.rank *
ht_args.num_local_experts)
def make_deepep_ll_a2a(pg: ProcessGroup,
pgi: ProcessGroupInfo,
deepep_ll_args: DeepEPLLArgs,
q_dtype: Optional[torch.dtype] = None,
block_shape: Optional[list[int]] = None):
import deep_ep
# low-latency a2a
num_rdma_bytes = deep_ep.Buffer.get_low_latency_rdma_size_hint(
deepep_ll_args.max_tokens_per_rank, deepep_ll_args.hidden_size,
pgi.world_size, deepep_ll_args.num_experts)
buffer = deep_ep.Buffer(group=pg,
num_rdma_bytes=num_rdma_bytes,
low_latency_mode=True,
num_qps_per_rank=deepep_ll_args.num_experts //
pgi.world_size)
return DeepEPLLPrepareAndFinalize(
buffer=buffer,
num_dispatchers=pgi.world_size,
max_tokens_per_rank=deepep_ll_args.max_tokens_per_rank,
use_fp8_dispatch=deepep_ll_args.use_fp8_dispatch,
)
def make_deepep_a2a(pg: ProcessGroup,
pgi: ProcessGroupInfo,
dp_size: int,
deepep_ht_args: Optional[DeepEPHTArgs],
deepep_ll_args: Optional[DeepEPLLArgs],
q_dtype: Optional[torch.dtype] = None,
block_shape: Optional[list[int]] = None):
if deepep_ht_args is not None:
assert deepep_ll_args is None
return make_deepep_ht_a2a(pg, pgi, dp_size, deepep_ht_args, q_dtype,
block_shape)
assert deepep_ll_args is not None
return make_deepep_ll_a2a(pg, pgi, deepep_ll_args, q_dtype, block_shape)