mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 01:05:01 +08:00
220 lines
8.1 KiB
Python
220 lines
8.1 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import json
|
|
|
|
import pytest
|
|
from openai_harmony import (Conversation, DeveloperContent,
|
|
HarmonyEncodingName, Message, Role, SystemContent,
|
|
load_harmony_encoding)
|
|
|
|
from vllm.entrypoints.openai.protocol import FunctionCall, ToolCall
|
|
from vllm.entrypoints.openai.tool_parsers import OpenAIToolParser
|
|
from vllm.transformers_utils.tokenizer import get_tokenizer
|
|
|
|
MODEL = "gpt2"
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def openai_tokenizer():
|
|
# The parser does not use the tokenizer, but the constructor requires it.
|
|
return get_tokenizer(MODEL)
|
|
|
|
|
|
@pytest.fixture
|
|
def openai_tool_parser(openai_tokenizer):
|
|
return OpenAIToolParser(openai_tokenizer)
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def harmony_encoding():
|
|
return load_harmony_encoding(HarmonyEncodingName.HARMONY_GPT_OSS)
|
|
|
|
|
|
def assert_tool_calls(
|
|
actual_tool_calls: list[ToolCall],
|
|
expected_tool_calls: list[ToolCall],
|
|
):
|
|
assert len(actual_tool_calls) == len(expected_tool_calls)
|
|
|
|
for actual_tool_call, expected_tool_call in zip(actual_tool_calls,
|
|
expected_tool_calls):
|
|
assert isinstance(actual_tool_call.id, str)
|
|
assert len(actual_tool_call.id) > 16 # Default from protocol.py
|
|
assert actual_tool_call.type == "function"
|
|
assert actual_tool_call.function == expected_tool_call.function
|
|
|
|
|
|
def test_extract_tool_calls_no_tools(openai_tool_parser, harmony_encoding):
|
|
convo = Conversation.from_messages([
|
|
Message.from_role_and_content(
|
|
Role.SYSTEM,
|
|
SystemContent.new(),
|
|
),
|
|
Message.from_role_and_content(
|
|
Role.DEVELOPER,
|
|
DeveloperContent.new().with_instructions("Talk like a pirate!")),
|
|
Message.from_role_and_content(Role.USER, "Arrr, how be you?"),
|
|
Message.from_role_and_content(Role.ASSISTANT,
|
|
"This is a test").with_channel("final")
|
|
])
|
|
token_ids = harmony_encoding.render_conversation_for_completion(
|
|
convo, Role.ASSISTANT)
|
|
extracted_info = openai_tool_parser.extract_tool_calls(
|
|
"",
|
|
request=None,
|
|
token_ids=token_ids,
|
|
)
|
|
assert not extracted_info.tools_called
|
|
assert extracted_info.tool_calls == []
|
|
assert extracted_info.content == "This is a test"
|
|
|
|
|
|
@pytest.mark.parametrize("tool_args", [
|
|
'{"location": "Tokyo"}',
|
|
'{\n"location": "Tokyo"\n}',
|
|
])
|
|
def test_extract_tool_calls_single_tool(openai_tool_parser, harmony_encoding,
|
|
tool_args):
|
|
convo = Conversation.from_messages([
|
|
Message.from_role_and_content(Role.USER,
|
|
"What is the weather in Tokyo?"),
|
|
Message.from_role_and_content(
|
|
Role.ASSISTANT,
|
|
'User asks: "What is the weather in Tokyo?" We need to use get_current_weather tool.', # noqa: E501
|
|
).with_channel("analysis"),
|
|
Message.from_role_and_content(
|
|
Role.ASSISTANT,
|
|
tool_args).with_channel("commentary").with_recipient(
|
|
"functions.get_current_weather").with_content_type("json"),
|
|
])
|
|
token_ids = harmony_encoding.render_conversation_for_completion(
|
|
convo, Role.ASSISTANT)
|
|
|
|
extracted_info = openai_tool_parser.extract_tool_calls(
|
|
"",
|
|
request=None,
|
|
token_ids=token_ids,
|
|
)
|
|
assert extracted_info.tools_called
|
|
expected_tool_calls = [
|
|
ToolCall(function=FunctionCall(
|
|
name="get_current_weather",
|
|
arguments=json.dumps({"location": "Tokyo"}),
|
|
))
|
|
]
|
|
assert_tool_calls(extracted_info.tool_calls, expected_tool_calls)
|
|
assert extracted_info.content is None
|
|
|
|
|
|
def test_extract_tool_calls_multiple_tools(
|
|
openai_tool_parser,
|
|
harmony_encoding,
|
|
):
|
|
convo = Conversation.from_messages([
|
|
Message.from_role_and_content(
|
|
Role.USER, "What is the weather in Tokyo based on where I'm at?"),
|
|
Message.from_role_and_content(
|
|
Role.ASSISTANT,
|
|
'User asks: "What is the weather in Tokyo?" based on their location. We need to use get_current_weather tool and get_user_location tool.', # noqa: E501
|
|
).with_channel("analysis"),
|
|
Message.from_role_and_content(
|
|
Role.ASSISTANT,
|
|
'{"location": "Tokyo"}').with_channel("commentary").with_recipient(
|
|
"functions.get_current_weather").with_content_type("json"),
|
|
Message.from_role_and_content(
|
|
Role.ASSISTANT,
|
|
'{"location": "Tokyo"}').with_channel("commentary").with_recipient(
|
|
"functions.get_user_location").with_content_type("json"),
|
|
Message.from_role_and_content(
|
|
Role.ASSISTANT, '{"location": "Tokyo"}').with_channel(
|
|
"commentary").with_recipient("functions.no_content_type"),
|
|
Message.from_role_and_content(Role.ASSISTANT, "foo").with_channel(
|
|
"commentary").with_recipient("functions.not_json_no_content_type"),
|
|
Message.from_role_and_content(
|
|
Role.ASSISTANT, '{}').with_channel("commentary").with_recipient(
|
|
"functions.empty_args").with_content_type("json"),
|
|
Message.from_role_and_content(
|
|
Role.ASSISTANT, '').with_channel("commentary").with_recipient(
|
|
"functions.no_args").with_content_type("json"),
|
|
])
|
|
token_ids = harmony_encoding.render_conversation_for_completion(
|
|
convo,
|
|
Role.ASSISTANT,
|
|
)
|
|
|
|
extracted_info = openai_tool_parser.extract_tool_calls(
|
|
"",
|
|
request=None,
|
|
token_ids=token_ids,
|
|
)
|
|
assert extracted_info.tools_called
|
|
expected_tool_calls = [
|
|
ToolCall(function=FunctionCall(
|
|
name="get_current_weather",
|
|
arguments=json.dumps({"location": "Tokyo"}),
|
|
)),
|
|
ToolCall(function=FunctionCall(
|
|
name="get_user_location",
|
|
arguments=json.dumps({"location": "Tokyo"}),
|
|
)),
|
|
ToolCall(function=FunctionCall(
|
|
name="no_content_type",
|
|
arguments=json.dumps({"location": "Tokyo"}),
|
|
)),
|
|
ToolCall(function=FunctionCall(
|
|
name="not_json_no_content_type",
|
|
arguments="foo",
|
|
)),
|
|
ToolCall(function=FunctionCall(
|
|
name="empty_args",
|
|
arguments=json.dumps({}),
|
|
)),
|
|
ToolCall(function=FunctionCall(
|
|
name="no_args",
|
|
arguments="",
|
|
))
|
|
]
|
|
assert_tool_calls(extracted_info.tool_calls, expected_tool_calls)
|
|
assert extracted_info.content is None
|
|
|
|
|
|
def test_extract_tool_calls_with_content(
|
|
openai_tool_parser,
|
|
harmony_encoding,
|
|
):
|
|
final_content = "This tool call will get the weather."
|
|
convo = Conversation.from_messages([
|
|
Message.from_role_and_content(
|
|
Role.USER, "What is the weather in Tokyo based on where I'm at?"),
|
|
Message.from_role_and_content(
|
|
Role.ASSISTANT,
|
|
'User asks: "What is the weather in Tokyo?" based on their location. We need to use get_current_weather tool and get_user_location tool.', # noqa: E501
|
|
).with_channel("analysis"),
|
|
Message.from_role_and_content(
|
|
Role.ASSISTANT,
|
|
'{"location": "Tokyo"}').with_channel("commentary").with_recipient(
|
|
"functions.get_current_weather").with_content_type("json"),
|
|
Message.from_role_and_content(Role.ASSISTANT,
|
|
final_content).with_channel("final"),
|
|
])
|
|
token_ids = harmony_encoding.render_conversation_for_completion(
|
|
convo,
|
|
Role.ASSISTANT,
|
|
)
|
|
|
|
extracted_info = openai_tool_parser.extract_tool_calls(
|
|
"",
|
|
request=None,
|
|
token_ids=token_ids,
|
|
)
|
|
assert extracted_info.tools_called
|
|
expected_tool_calls = [
|
|
ToolCall(function=FunctionCall(
|
|
name="get_current_weather",
|
|
arguments=json.dumps({"location": "Tokyo"}),
|
|
)),
|
|
]
|
|
assert_tool_calls(extracted_info.tool_calls, expected_tool_calls)
|
|
assert extracted_info.content == final_content
|