mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-11 17:25:37 +08:00
The 2nd PR for #4532. This PR supports loading FP8 kv-cache scaling factors from a FP8 checkpoint (with .kv_scale parameter).
396 lines
14 KiB
Python
396 lines
14 KiB
Python
# coding=utf-8
|
|
# Adapted from
|
|
# https://github.com/THUDM/ChatGLM2-6B
|
|
"""Inference-only ChatGLM model compatible with THUDM weights."""
|
|
from typing import Iterable, List, Optional, Tuple
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import LayerNorm
|
|
|
|
from vllm.attention import Attention, AttentionMetadata
|
|
from vllm.config import CacheConfig, LoRAConfig
|
|
from vllm.distributed import get_tensor_model_parallel_world_size
|
|
from vllm.model_executor.layers.activation import SiluAndMul
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization.base_config import (
|
|
QuantizationConfig)
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.layers.sampler import Sampler
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead, VocabParallelEmbedding)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
from vllm.sequence import SamplerOutput
|
|
from vllm.transformers_utils.configs import ChatGLMConfig
|
|
|
|
|
|
class GLMAttention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
self.total_num_heads = config.num_attention_heads
|
|
assert self.total_num_heads % tp_size == 0
|
|
self.num_heads = self.total_num_heads // tp_size
|
|
self.multi_query_attention = config.multi_query_attention
|
|
self.total_num_kv_heads = (config.multi_query_group_num
|
|
if config.multi_query_attention else
|
|
config.num_attention_heads)
|
|
if self.total_num_kv_heads >= tp_size:
|
|
# Number of KV heads is greater than TP size, so we partition
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert self.total_num_kv_heads % tp_size == 0
|
|
else:
|
|
# Number of KV heads is less than TP size, so we replicate
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert tp_size % self.total_num_kv_heads == 0
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
|
self.head_dim = config.hidden_size // self.total_num_heads
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
self.scaling = self.head_dim**-0.5
|
|
|
|
self.query_key_value = QKVParallelLinear(
|
|
self.hidden_size,
|
|
self.head_dim,
|
|
self.total_num_heads,
|
|
self.total_num_kv_heads,
|
|
bias=config.add_bias_linear or config.add_qkv_bias,
|
|
quant_config=quant_config,
|
|
)
|
|
self.dense = RowParallelLinear(
|
|
self.total_num_heads * self.head_dim,
|
|
config.hidden_size,
|
|
bias=config.add_bias_linear,
|
|
quant_config=quant_config,
|
|
)
|
|
|
|
# https://huggingface.co/THUDM/chatglm3-6b-32k/blob/e210410255278dd9d74463cf396ba559c0ef801c/modeling_chatglm.py#L141
|
|
rope_ratio = getattr(config, "rope_ratio", 1.0)
|
|
max_positions = getattr(config, "seq_length", 8192)
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim // 2,
|
|
max_position=max_positions,
|
|
base=10000 * rope_ratio,
|
|
is_neox_style=False,
|
|
)
|
|
self.attn = Attention(self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
num_kv_heads=self.num_kv_heads,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
position_ids: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.query_key_value(hidden_states)
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
q, k = self.rotary_emb(position_ids, q, k)
|
|
context_layer = self.attn(
|
|
q,
|
|
k,
|
|
v,
|
|
kv_cache,
|
|
attn_metadata,
|
|
)
|
|
attn_output, _ = self.dense(context_layer)
|
|
return attn_output
|
|
|
|
|
|
class GLMMLP(nn.Module):
|
|
"""MLP.
|
|
|
|
MLP will take the input with h hidden state, project it to 4*h
|
|
hidden dimension, perform nonlinear transformation, and project the
|
|
state back into h hidden dimension.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
config,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
):
|
|
super().__init__()
|
|
|
|
self.add_bias = config.add_bias_linear
|
|
|
|
# Project to 4h.
|
|
self.dense_h_to_4h = MergedColumnParallelLinear(
|
|
config.hidden_size,
|
|
[config.ffn_hidden_size] * 2,
|
|
bias=config.add_bias_linear,
|
|
quant_config=quant_config,
|
|
)
|
|
|
|
self.activation_func = SiluAndMul()
|
|
|
|
# Project back to h.
|
|
self.dense_4h_to_h = RowParallelLinear(
|
|
config.ffn_hidden_size,
|
|
config.hidden_size,
|
|
bias=config.add_bias_linear,
|
|
quant_config=quant_config,
|
|
)
|
|
|
|
def forward(self, hidden_states):
|
|
# [s, b, 4hp]
|
|
intermediate_parallel, _ = self.dense_h_to_4h(hidden_states)
|
|
intermediate_parallel = self.activation_func(intermediate_parallel)
|
|
# [s, b, h]
|
|
output, _ = self.dense_4h_to_h(intermediate_parallel)
|
|
return output
|
|
|
|
|
|
class GLMBlock(nn.Module):
|
|
"""A single transformer layer.
|
|
|
|
Transformer layer takes input with size [s, b, h] and returns an
|
|
output of the same size.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
config,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
):
|
|
super().__init__()
|
|
self.apply_residual_connection_post_layernorm = (
|
|
config.apply_residual_connection_post_layernorm)
|
|
|
|
self.fp32_residual_connection = config.fp32_residual_connection
|
|
|
|
layer_norm_func = RMSNorm if config.rmsnorm else LayerNorm
|
|
# Layernorm on the input data.
|
|
self.input_layernorm = layer_norm_func(config.hidden_size,
|
|
eps=config.layernorm_epsilon)
|
|
|
|
# Self attention.
|
|
self.self_attention = GLMAttention(config, cache_config, quant_config)
|
|
self.hidden_dropout = config.hidden_dropout
|
|
|
|
# Layernorm on the attention output
|
|
self.post_attention_layernorm = layer_norm_func(
|
|
config.hidden_size, eps=config.layernorm_epsilon)
|
|
|
|
# MLP
|
|
self.mlp = GLMMLP(config, quant_config)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
position_ids: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
# hidden_states: [num_tokens, h]
|
|
# Layer norm at the beginning of the transformer layer.
|
|
layernorm_output = self.input_layernorm(hidden_states)
|
|
# Self attention.
|
|
attention_output = self.self_attention(
|
|
hidden_states=layernorm_output,
|
|
position_ids=position_ids,
|
|
kv_cache=kv_cache,
|
|
attn_metadata=attn_metadata,
|
|
)
|
|
|
|
# Residual connection.
|
|
if self.apply_residual_connection_post_layernorm:
|
|
residual = layernorm_output
|
|
else:
|
|
residual = hidden_states
|
|
|
|
layernorm_input = residual + attention_output
|
|
|
|
# Layer norm post the self attention.
|
|
layernorm_output = self.post_attention_layernorm(layernorm_input)
|
|
|
|
# Second residual connection.
|
|
if self.apply_residual_connection_post_layernorm:
|
|
residual = layernorm_output
|
|
else:
|
|
residual = layernorm_input
|
|
|
|
output = self.mlp(layernorm_output) + residual
|
|
|
|
return output
|
|
|
|
|
|
class GLMTransformer(nn.Module):
|
|
"""Transformer class."""
|
|
|
|
def __init__(
|
|
self,
|
|
config,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
):
|
|
super().__init__()
|
|
self.post_layer_norm = config.post_layer_norm
|
|
|
|
# Number of layers.
|
|
self.num_layers = config.num_layers
|
|
|
|
# Transformer layers.
|
|
self.layers = nn.ModuleList([
|
|
GLMBlock(config, cache_config, quant_config)
|
|
for i in range(self.num_layers)
|
|
])
|
|
|
|
if self.post_layer_norm:
|
|
layer_norm_func = RMSNorm if config.rmsnorm else LayerNorm
|
|
# Final layer norm before output.
|
|
self.final_layernorm = layer_norm_func(
|
|
config.hidden_size, eps=config.layernorm_epsilon)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
position_ids: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
for i in range(self.num_layers):
|
|
layer = self.layers[i]
|
|
hidden_states = layer(
|
|
hidden_states=hidden_states,
|
|
position_ids=position_ids,
|
|
kv_cache=kv_caches[i],
|
|
attn_metadata=attn_metadata,
|
|
)
|
|
# Final layer norm.
|
|
if self.post_layer_norm:
|
|
hidden_states = self.final_layernorm(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class ChatGLMModel(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
):
|
|
super().__init__()
|
|
|
|
self.embedding = VocabParallelEmbedding(config.padded_vocab_size,
|
|
config.hidden_size)
|
|
|
|
self.num_layers = config.num_layers
|
|
self.multi_query_group_num = config.multi_query_group_num
|
|
self.kv_channels = config.kv_channels
|
|
self.encoder = GLMTransformer(config, cache_config, quant_config)
|
|
|
|
self.output_layer = ParallelLMHead(config.padded_vocab_size,
|
|
config.hidden_size)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
position_ids: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
inputs_embeds = self.embedding(input_ids)
|
|
|
|
# Run encoder.
|
|
hidden_states = self.encoder(
|
|
hidden_states=inputs_embeds,
|
|
position_ids=position_ids,
|
|
kv_caches=kv_caches,
|
|
attn_metadata=attn_metadata,
|
|
)
|
|
return hidden_states
|
|
|
|
|
|
class ChatGLMForCausalLM(nn.Module):
|
|
packed_modules_mapping = {
|
|
"query_key_value": ["query_key_value"],
|
|
"dense_h_to_4h": ["dense_h_to_4h"]
|
|
}
|
|
# LoRA specific attributes
|
|
supported_lora_modules = [
|
|
"query_key_value",
|
|
"dense",
|
|
"dense_h_to_4h",
|
|
"dense_4h_to_h",
|
|
]
|
|
embedding_modules = {}
|
|
embedding_padding_modules = []
|
|
|
|
def __init__(
|
|
self,
|
|
config: ChatGLMConfig,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
lora_config: Optional[LoRAConfig] = None,
|
|
):
|
|
super().__init__()
|
|
self.config: ChatGLMConfig = config
|
|
self.quant_config = quant_config
|
|
self.max_position_embeddings = getattr(config, "max_sequence_length",
|
|
8192)
|
|
self.transformer = ChatGLMModel(config, cache_config, quant_config)
|
|
self.lm_head_weight = self.transformer.output_layer.weight
|
|
self.logits_processor = LogitsProcessor(config.padded_vocab_size)
|
|
self.sampler = Sampler()
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.transformer(input_ids, positions, kv_caches,
|
|
attn_metadata)
|
|
return hidden_states
|
|
|
|
def compute_logits(self, hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
|
logits = self.logits_processor(self.lm_head_weight, hidden_states,
|
|
sampling_metadata)
|
|
return logits
|
|
|
|
def sample(
|
|
self,
|
|
logits: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[SamplerOutput]:
|
|
next_tokens = self.sampler(logits, sampling_metadata)
|
|
return next_tokens
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
|
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
|
for name, loaded_weight in weights:
|
|
if "rotary_pos_emb.inv_freq" in name:
|
|
continue
|
|
if "word_embeddings" in name:
|
|
name = name.replace(".word_embeddings", "")
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|