mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-23 18:35:01 +08:00
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com> Signed-off-by: Matthew Bonanni <mbonanni001@gmail.com> Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
418 lines
14 KiB
Python
418 lines
14 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""Attention layer with XFormersAttention."""
|
|
|
|
from dataclasses import dataclass
|
|
from typing import ClassVar, Optional
|
|
|
|
import torch
|
|
|
|
from vllm.attention.backends.abstract import (
|
|
AttentionBackend,
|
|
AttentionImpl,
|
|
AttentionType,
|
|
MultipleOf,
|
|
)
|
|
from vllm.attention.ops.triton_unified_attention import unified_attention
|
|
from vllm.config import VllmConfig
|
|
from vllm.logger import init_logger
|
|
from vllm.v1.attention.backends.utils import (
|
|
AttentionMetadataBuilder,
|
|
CommonAttentionMetadata,
|
|
split_decodes_and_prefills,
|
|
)
|
|
from vllm.v1.kv_cache_interface import AttentionSpec
|
|
|
|
try:
|
|
from xformers import ops as xops
|
|
from xformers.ops.fmha.attn_bias import (
|
|
AttentionBias,
|
|
PagedBlockDiagonalCausalWithOffsetPaddedKeysMask,
|
|
)
|
|
|
|
XFORMERS_AVAILABLE = True
|
|
except ImportError:
|
|
XFORMERS_AVAILABLE = False
|
|
|
|
from vllm import _custom_ops as ops
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class XFormersAttentionBackend(AttentionBackend):
|
|
accept_output_buffer: bool = True
|
|
supported_dtypes: ClassVar[list[torch.dtype]] = [torch.float16, torch.bfloat16]
|
|
supported_kernel_block_sizes: ClassVar[list[int | MultipleOf]] = [MultipleOf(16)]
|
|
|
|
@classmethod
|
|
def get_supported_head_sizes(cls) -> list[int]:
|
|
return [
|
|
32,
|
|
40,
|
|
48,
|
|
56,
|
|
64,
|
|
72,
|
|
80,
|
|
88,
|
|
96,
|
|
104,
|
|
112,
|
|
120,
|
|
128,
|
|
136,
|
|
144,
|
|
152,
|
|
160,
|
|
168,
|
|
176,
|
|
184,
|
|
192,
|
|
200,
|
|
208,
|
|
216,
|
|
224,
|
|
232,
|
|
240,
|
|
248,
|
|
256,
|
|
]
|
|
|
|
@staticmethod
|
|
def get_name() -> str:
|
|
return "XFORMERS"
|
|
|
|
@staticmethod
|
|
def get_impl_cls() -> type["XFormersAttentionImpl"]:
|
|
return XFormersAttentionImpl
|
|
|
|
@staticmethod
|
|
def get_kv_cache_shape(
|
|
num_blocks: int,
|
|
block_size: int,
|
|
num_kv_heads: int,
|
|
head_size: int,
|
|
cache_dtype_str: str = "auto",
|
|
) -> tuple[int, ...]:
|
|
if block_size % 16 != 0:
|
|
raise ValueError("Block size must be a multiple of 16.")
|
|
return (2, num_blocks, block_size, num_kv_heads, head_size)
|
|
|
|
@staticmethod
|
|
def get_builder_cls() -> type["XFormersAttentionMetadataBuilder"]:
|
|
return XFormersAttentionMetadataBuilder
|
|
|
|
@staticmethod
|
|
def use_cascade_attention(*args, **kwargs) -> bool:
|
|
return False
|
|
|
|
|
|
@dataclass
|
|
class XFormersAttentionMetadata:
|
|
num_actual_tokens: int # Number of tokens excluding padding.
|
|
max_query_len: int
|
|
query_start_loc: torch.Tensor
|
|
max_seq_len: int
|
|
seq_lens: torch.Tensor
|
|
block_table: torch.Tensor
|
|
slot_mapping: torch.Tensor
|
|
|
|
num_prefill_tokens: int = 0
|
|
num_decode_tokens: int = 0
|
|
num_prefills: int = 0
|
|
num_decodes: int = 0
|
|
|
|
# Biases for different attention types.
|
|
attn_bias: Optional["AttentionBias"] = None
|
|
|
|
# Self-attention prefill/decode metadata cache
|
|
_cached_prefill_metadata: Optional["XFormersAttentionMetadata"] = None
|
|
_cached_decode_metadata: Optional["XFormersAttentionMetadata"] = None
|
|
|
|
@property
|
|
def prefill_metadata(self) -> Optional["XFormersAttentionMetadata"]:
|
|
if self.num_prefills == 0:
|
|
return None
|
|
|
|
if self._cached_prefill_metadata is not None:
|
|
# Recover cached prefill-phase attention
|
|
# metadata structure
|
|
return self._cached_prefill_metadata
|
|
|
|
q_start_loc = self.query_start_loc[self.num_decodes :]
|
|
q_seqlens = torch.diff(q_start_loc)
|
|
kv_seqlens = self.seq_lens[self.num_decodes :]
|
|
# Construct & cache prefill-phase attention metadata structure
|
|
self._cached_prefill_metadata = XFormersAttentionMetadata(
|
|
num_actual_tokens=self.num_prefill_tokens,
|
|
max_query_len=int(q_seqlens.max().item()),
|
|
query_start_loc=q_start_loc - q_start_loc[0],
|
|
max_seq_len=int(kv_seqlens.max().item()),
|
|
seq_lens=kv_seqlens,
|
|
block_table=self.block_table[self.num_decodes :],
|
|
slot_mapping=self.slot_mapping[self.num_decode_tokens :],
|
|
)
|
|
return self._cached_prefill_metadata
|
|
|
|
@property
|
|
def decode_metadata(self) -> Optional["XFormersAttentionMetadata"]:
|
|
if self.num_decode_tokens == 0:
|
|
return None
|
|
|
|
if self._cached_decode_metadata is not None:
|
|
# Recover cached decode-phase attention
|
|
# metadata structure
|
|
return self._cached_decode_metadata
|
|
|
|
q_start_loc = self.query_start_loc
|
|
q_seqlens = torch.diff(q_start_loc)
|
|
decode_kv_seqlens = self.seq_lens[: self.num_decodes]
|
|
# Construct & cache decode-phase attention metadata structure
|
|
self._cached_decode_metadata = XFormersAttentionMetadata(
|
|
num_actual_tokens=self.num_decode_tokens,
|
|
max_query_len=int(q_seqlens[: self.num_decodes].max().item()),
|
|
query_start_loc=q_start_loc[: self.num_decodes + 1],
|
|
max_seq_len=int(decode_kv_seqlens.max().item()),
|
|
seq_lens=decode_kv_seqlens,
|
|
block_table=self.block_table[: self.num_decodes],
|
|
slot_mapping=self.slot_mapping[: self.num_decode_tokens],
|
|
attn_bias=self.attn_bias,
|
|
)
|
|
return self._cached_decode_metadata
|
|
|
|
|
|
class XFormersAttentionMetadataBuilder(
|
|
AttentionMetadataBuilder[XFormersAttentionMetadata]
|
|
):
|
|
reorder_batch_threshold: int = 1
|
|
|
|
def __init__(
|
|
self,
|
|
kv_cache_spec: AttentionSpec,
|
|
layer_names: list[str],
|
|
vllm_config: VllmConfig,
|
|
device: torch.device,
|
|
):
|
|
super().__init__(kv_cache_spec, layer_names, vllm_config, device)
|
|
|
|
assert XFORMERS_AVAILABLE
|
|
self.block_size = kv_cache_spec.block_size
|
|
self._num_decodes = 0
|
|
self._num_decode_tokens = 0
|
|
|
|
def build(
|
|
self,
|
|
common_prefix_len: int,
|
|
common_attn_metadata: CommonAttentionMetadata,
|
|
fast_build: bool = False,
|
|
) -> XFormersAttentionMetadata:
|
|
num_decodes, num_prefills, num_decode_tokens, num_prefill_tokens = (
|
|
split_decodes_and_prefills(
|
|
common_attn_metadata, decode_threshold=self.reorder_batch_threshold
|
|
)
|
|
)
|
|
|
|
num_actual_tokens = common_attn_metadata.num_actual_tokens
|
|
q_start_loc = common_attn_metadata.query_start_loc
|
|
q_seqlens = torch.diff(q_start_loc)
|
|
max_query_len = common_attn_metadata.max_query_len
|
|
kv_seqlens = common_attn_metadata.seq_lens
|
|
max_seq_len = common_attn_metadata.max_seq_len
|
|
block_table = common_attn_metadata.block_table_tensor
|
|
slot_mapping = common_attn_metadata.slot_mapping
|
|
|
|
bias = None
|
|
if num_decodes > 0:
|
|
# Construct the decoder bias.
|
|
decode_q_seqlens = q_seqlens[:num_decodes]
|
|
decode_kv_seqlens = kv_seqlens[:num_decodes]
|
|
bias = PagedBlockDiagonalCausalWithOffsetPaddedKeysMask.from_seqlens(
|
|
q_seqlen=decode_q_seqlens.tolist(),
|
|
kv_seqlen=decode_kv_seqlens.tolist(),
|
|
page_size=self.block_size,
|
|
block_tables=block_table[:num_decodes],
|
|
device=block_table.device,
|
|
)
|
|
|
|
return XFormersAttentionMetadata(
|
|
num_actual_tokens=num_actual_tokens,
|
|
num_prefill_tokens=num_prefill_tokens,
|
|
num_decode_tokens=num_decode_tokens,
|
|
num_prefills=num_prefills,
|
|
num_decodes=num_decodes,
|
|
max_query_len=max_query_len,
|
|
query_start_loc=q_start_loc,
|
|
max_seq_len=max_seq_len,
|
|
seq_lens=kv_seqlens,
|
|
block_table=block_table,
|
|
slot_mapping=slot_mapping,
|
|
attn_bias=bias,
|
|
)
|
|
|
|
|
|
class XFormersAttentionImpl(AttentionImpl):
|
|
def __init__(
|
|
self,
|
|
num_heads: int,
|
|
head_size: int,
|
|
scale: float,
|
|
num_kv_heads: int,
|
|
alibi_slopes: list[float] | None,
|
|
sliding_window: int | None,
|
|
kv_cache_dtype: str,
|
|
logits_soft_cap: float | None = None,
|
|
attn_type: AttentionType = AttentionType.DECODER,
|
|
kv_sharing_target_layer_name: str | None = None,
|
|
) -> None:
|
|
if kv_sharing_target_layer_name is not None:
|
|
raise NotImplementedError("KV sharing is not supported in V0.")
|
|
if alibi_slopes is not None:
|
|
raise NotImplementedError("XFormers does not support alibi slopes yet.")
|
|
self.num_heads = num_heads
|
|
self.head_size = head_size
|
|
self.scale = float(scale)
|
|
self.num_kv_heads = num_kv_heads
|
|
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
|
|
self.kv_cache_dtype = kv_cache_dtype
|
|
self.kv_sharing_target_layer_name = kv_sharing_target_layer_name
|
|
if alibi_slopes is not None:
|
|
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
|
|
self.alibi_slopes = alibi_slopes
|
|
if sliding_window is None:
|
|
self.sliding_window = (-1, -1)
|
|
else:
|
|
self.sliding_window = (sliding_window - 1, 0)
|
|
if logits_soft_cap is None:
|
|
# Setting logits_soft_cap to 0 means no soft cap.
|
|
logits_soft_cap = 0
|
|
self.logits_soft_cap = logits_soft_cap
|
|
|
|
if attn_type != AttentionType.DECODER:
|
|
raise NotImplementedError(
|
|
"Encoder self-attention and "
|
|
"encoder/decoder cross-attention "
|
|
"are not implemented for "
|
|
"XFormersAttentionImpl."
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: XFormersAttentionMetadata,
|
|
output: torch.Tensor | None = None,
|
|
output_scale: torch.Tensor | None = None,
|
|
output_block_scale: torch.Tensor | None = None,
|
|
) -> torch.Tensor:
|
|
"""Forward pass with XFormers.
|
|
|
|
Args:
|
|
query: shape = [num_tokens, num_heads, head_size]
|
|
key: shape = [num_tokens, num_kv_heads, head_size]
|
|
value: shape = [num_tokens, num_kv_heads, head_size]
|
|
kv_cache: shape =
|
|
[2, num_blocks, block_size, num_kv_heads, head_size]
|
|
attn_metadata: Metadata for attention.
|
|
Returns:
|
|
shape = [num_tokens, num_heads * head_size]
|
|
"""
|
|
assert output is not None, "Output tensor must be provided."
|
|
|
|
if output_scale is not None or output_block_scale is not None:
|
|
raise NotImplementedError(
|
|
"fused output quantization is not yet supported"
|
|
" for XFormersAttentionImpl"
|
|
)
|
|
|
|
if attn_metadata is None:
|
|
# Profiling run.
|
|
return output.fill_(0)
|
|
|
|
# Cache the input KVs.
|
|
key_cache, value_cache = kv_cache.unbind(0)
|
|
if self.kv_sharing_target_layer_name is None:
|
|
# Reshape the input keys and values and store them in the cache.
|
|
# Skip this if sharing KV cache with an earlier attention layer.
|
|
# NOTE(woosuk): Here, key and value are padded while slot_mapping is
|
|
# not padded. However, we don't need to do key[:num_actual_tokens]
|
|
# and value[:num_actual_tokens] because the reshape_and_cache_flash
|
|
# op uses the slot_mapping's shape to determine the number of
|
|
# actual tokens.
|
|
ops.reshape_and_cache_flash(
|
|
key,
|
|
value,
|
|
key_cache,
|
|
value_cache,
|
|
attn_metadata.slot_mapping,
|
|
self.kv_cache_dtype,
|
|
layer._k_scale,
|
|
layer._v_scale,
|
|
)
|
|
|
|
num_actual_tokens = attn_metadata.num_actual_tokens
|
|
num_decode_tokens = attn_metadata.num_decode_tokens
|
|
if prefill_meta := attn_metadata.prefill_metadata:
|
|
descale_shape = (prefill_meta.query_start_loc.shape[0] - 1, key.shape[1])
|
|
unified_attention(
|
|
q=query[num_decode_tokens:num_actual_tokens],
|
|
k=key_cache,
|
|
v=value_cache,
|
|
out=output[num_decode_tokens:num_actual_tokens],
|
|
cu_seqlens_q=prefill_meta.query_start_loc,
|
|
max_seqlen_q=prefill_meta.max_query_len,
|
|
seqused_k=prefill_meta.seq_lens,
|
|
max_seqlen_k=prefill_meta.max_seq_len,
|
|
softmax_scale=self.scale,
|
|
causal=True,
|
|
alibi_slopes=self.alibi_slopes,
|
|
window_size=self.sliding_window,
|
|
block_table=prefill_meta.block_table,
|
|
softcap=self.logits_soft_cap,
|
|
q_descale=None, # Not supported
|
|
k_descale=layer._k_scale.expand(descale_shape),
|
|
v_descale=layer._v_scale.expand(descale_shape),
|
|
)
|
|
|
|
if decode_meta := attn_metadata.decode_metadata:
|
|
# Query for decode. KV is not needed because it is already cached.
|
|
decode_query = query[:num_decode_tokens]
|
|
# Reshape query to [1, B_T, G, H, D].
|
|
q = decode_query.view(
|
|
1, -1, self.num_kv_heads, self.num_queries_per_kv, self.head_size
|
|
)
|
|
# Reshape the k and v caches to [1, Bkv_T, G, H, D]
|
|
cache_k = key_cache.view(
|
|
1, -1, self.num_kv_heads, 1, self.head_size
|
|
).expand(
|
|
1,
|
|
-1,
|
|
self.num_kv_heads,
|
|
self.num_queries_per_kv,
|
|
self.head_size,
|
|
)
|
|
cache_v = value_cache.view(
|
|
1, -1, self.num_kv_heads, 1, self.head_size
|
|
).expand(
|
|
1,
|
|
-1,
|
|
self.num_kv_heads,
|
|
self.num_queries_per_kv,
|
|
self.head_size,
|
|
)
|
|
|
|
attn_bias = decode_meta.attn_bias
|
|
output[:num_decode_tokens] = xops.memory_efficient_attention_forward(
|
|
q,
|
|
cache_k,
|
|
cache_v,
|
|
attn_bias=attn_bias,
|
|
p=0.0,
|
|
scale=self.scale,
|
|
).view(decode_query.shape)
|
|
|
|
# Reshape the output tensor.
|
|
return output
|