vllm/vllm/v1/utils.py
Cyrus Leung 6ebffafbb6
[Misc] Clean up more utils (#27567)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-27 15:30:38 +00:00

412 lines
14 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import contextlib
import multiprocessing
import time
import weakref
from collections.abc import Callable, Sequence
from contextlib import AbstractContextManager
from multiprocessing import connection
from multiprocessing.process import BaseProcess
from typing import (
TYPE_CHECKING,
Any,
Generic,
Optional,
TypeVar,
Union,
overload,
)
import torch
from torch.autograd.profiler import record_function
import vllm.envs as envs
from vllm.logger import init_logger
from vllm.usage.usage_lib import UsageContext, is_usage_stats_enabled, usage_message
from vllm.utils.network_utils import get_open_port, get_open_zmq_ipc_path, get_tcp_uri
from vllm.utils.system_utils import kill_process_tree
if TYPE_CHECKING:
import numpy as np
from vllm.v1.engine.coordinator import DPCoordinator
from vllm.v1.engine.utils import CoreEngineActorManager, CoreEngineProcManager
logger = init_logger(__name__)
T = TypeVar("T")
class ConstantList(Generic[T], Sequence):
def __init__(self, x: list[T]) -> None:
self._x = x
def append(self, item):
raise TypeError("Cannot append to a constant list")
def extend(self, item):
raise TypeError("Cannot extend a constant list")
def insert(self, item):
raise TypeError("Cannot insert into a constant list")
def pop(self, item):
raise TypeError("Cannot pop from a constant list")
def remove(self, item):
raise TypeError("Cannot remove from a constant list")
def clear(self):
raise TypeError("Cannot clear a constant list")
def index(self, item: T, start: int = 0, stop: int | None = None) -> int:
return self._x.index(item, start, stop if stop is not None else len(self._x))
@overload
def __getitem__(self, item: int) -> T: ...
@overload
def __getitem__(self, s: slice, /) -> list[T]: ...
def __getitem__(self, item: int | slice) -> T | list[T]:
return self._x[item]
@overload
def __setitem__(self, item: int, value: T): ...
@overload
def __setitem__(self, s: slice, value: T, /): ...
def __setitem__(self, item: int | slice, value: T | list[T]):
raise TypeError("Cannot set item in a constant list")
def __delitem__(self, item):
raise TypeError("Cannot delete item from a constant list")
def __iter__(self):
return iter(self._x)
def __contains__(self, item):
return item in self._x
def __len__(self):
return len(self._x)
def __repr__(self):
return f"ConstantList({self._x})"
class CpuGpuBuffer:
"""Buffer to easily copy tensors between CPU and GPU."""
def __init__(
self,
*size: int | torch.SymInt,
dtype: torch.dtype,
device: torch.device,
pin_memory: bool,
with_numpy: bool = True,
) -> None:
self.cpu = torch.zeros(*size, dtype=dtype, device="cpu", pin_memory=pin_memory)
self.gpu = torch.zeros_like(self.cpu, device=device)
self.np: np.ndarray
# To keep type hints simple (avoiding generics and subclasses), we
# only conditionally create the numpy array attribute. This can cause
# AttributeError if `self.np` is accessed when `with_numpy=False`.
if with_numpy:
if dtype == torch.bfloat16:
raise ValueError(
"Bfloat16 torch tensors cannot be directly cast to a "
"numpy array, so call CpuGpuBuffer with with_numpy=False"
)
self.np = self.cpu.numpy()
def copy_to_gpu(self, n: int | None = None) -> torch.Tensor:
if n is None:
return self.gpu.copy_(self.cpu, non_blocking=True)
return self.gpu[:n].copy_(self.cpu[:n], non_blocking=True)
def copy_to_cpu(self, n: int | None = None) -> torch.Tensor:
"""NOTE: Because this method is non-blocking, explicit synchronization
is needed to ensure the data is copied to CPU."""
if n is None:
return self.cpu.copy_(self.gpu, non_blocking=True)
return self.cpu[:n].copy_(self.gpu[:n], non_blocking=True)
def get_engine_client_zmq_addr(local_only: bool, host: str, port: int = 0) -> str:
"""Assign a new ZMQ socket address.
If local_only is True, participants are colocated and so a unique IPC
address will be returned.
Otherwise, the provided host and port will be used to construct a TCP
address (port == 0 means assign an available port)."""
return (
get_open_zmq_ipc_path()
if local_only
else (get_tcp_uri(host, port or get_open_port()))
)
class APIServerProcessManager:
"""Manages a group of API server processes.
Handles creation, monitoring, and termination of API server worker
processes. Also monitors extra processes to check if they are healthy.
"""
def __init__(
self,
target_server_fn: Callable,
listen_address: str,
sock: Any,
args: argparse.Namespace,
num_servers: int,
input_addresses: list[str],
output_addresses: list[str],
stats_update_address: str | None = None,
):
"""Initialize and start API server worker processes.
Args:
target_server_fn: Function to call for each API server process
listen_address: Address to listen for client connections
sock: Socket for client connections
args: Command line arguments
num_servers: Number of API server processes to start
input_addresses: Input addresses for each API server
output_addresses: Output addresses for each API server
stats_update_address: Optional stats update address
"""
self.listen_address = listen_address
self.sock = sock
self.args = args
# Start API servers
spawn_context = multiprocessing.get_context("spawn")
self.processes: list[BaseProcess] = []
for i, in_addr, out_addr in zip(
range(num_servers), input_addresses, output_addresses
):
client_config = {
"input_address": in_addr,
"output_address": out_addr,
"client_count": num_servers,
"client_index": i,
}
if stats_update_address is not None:
client_config["stats_update_address"] = stats_update_address
proc = spawn_context.Process(
target=target_server_fn,
name=f"ApiServer_{i}",
args=(listen_address, sock, args, client_config),
)
self.processes.append(proc)
proc.start()
logger.info("Started %d API server processes", len(self.processes))
# Shutdown only the API server processes on garbage collection
# The extra processes are managed by their owners
self._finalizer = weakref.finalize(self, shutdown, self.processes)
def close(self) -> None:
self._finalizer()
def wait_for_completion_or_failure(
api_server_manager: APIServerProcessManager,
engine_manager: Union["CoreEngineProcManager", "CoreEngineActorManager"]
| None = None,
coordinator: Optional["DPCoordinator"] = None,
) -> None:
"""Wait for all processes to complete or detect if any fail.
Raises an exception if any process exits with a non-zero status.
Args:
api_server_manager: The manager for API servers.
engine_manager: The manager for engine processes.
If CoreEngineProcManager, it manages local engines;
if CoreEngineActorManager, it manages all engines.
coordinator: The coordinator for data parallel.
"""
from vllm.v1.engine.utils import CoreEngineActorManager, CoreEngineProcManager
try:
logger.info("Waiting for API servers to complete ...")
# Create a mapping of sentinels to their corresponding processes
# for efficient lookup
sentinel_to_proc: dict[Any, BaseProcess] = {
proc.sentinel: proc for proc in api_server_manager.processes
}
if coordinator:
sentinel_to_proc[coordinator.proc.sentinel] = coordinator.proc
actor_run_refs = []
if isinstance(engine_manager, CoreEngineProcManager):
for proc in engine_manager.processes:
sentinel_to_proc[proc.sentinel] = proc
elif isinstance(engine_manager, CoreEngineActorManager):
actor_run_refs = engine_manager.get_run_refs()
# Check if any process terminates
while sentinel_to_proc or actor_run_refs:
# Wait for any process to terminate
ready_sentinels: list[Any] = connection.wait(sentinel_to_proc, timeout=5)
# Process any terminated processes
for sentinel in ready_sentinels:
proc = sentinel_to_proc.pop(sentinel)
# Check if process exited with error
if proc.exitcode != 0:
raise RuntimeError(
f"Process {proc.name} (PID: {proc.pid}) "
f"died with exit code {proc.exitcode}"
)
if actor_run_refs:
import ray
_, actor_run_refs = ray.wait(actor_run_refs, timeout=5)
except KeyboardInterrupt:
logger.info("Received KeyboardInterrupt, shutting down API servers...")
except Exception as e:
logger.exception("Exception occurred while running API servers: %s", str(e))
raise
finally:
logger.info("Terminating remaining processes ...")
api_server_manager.close()
if coordinator:
coordinator.close()
if engine_manager:
engine_manager.close()
# Note(rob): shutdown function cannot be a bound method,
# else the gc cannot collect the object.
def shutdown(procs: list[BaseProcess]):
# Shutdown the process.
for proc in procs:
if proc.is_alive():
proc.terminate()
# Allow 5 seconds for remaining procs to terminate.
deadline = time.monotonic() + 5
for proc in procs:
remaining = deadline - time.monotonic()
if remaining <= 0:
break
if proc.is_alive():
proc.join(remaining)
for proc in procs:
if proc.is_alive() and (pid := proc.pid) is not None:
kill_process_tree(pid)
def copy_slice(
from_tensor: torch.Tensor, to_tensor: torch.Tensor, length: int
) -> torch.Tensor:
"""
Copy the first length elements of a tensor into another tensor in a
non-blocking manner.
Used to copy pinned CPU tensor data to pre-allocated GPU tensors.
Returns the sliced target tensor.
"""
return to_tensor[:length].copy_(from_tensor[:length], non_blocking=True)
def report_usage_stats(
vllm_config, usage_context: UsageContext = UsageContext.ENGINE_CONTEXT
) -> None:
"""Report usage statistics if enabled."""
if not is_usage_stats_enabled():
return
from vllm.model_executor.model_loader import get_architecture_class_name
parallel_config = vllm_config.parallel_config
# Prepare KV connector string if applicable
kv_connector = None
if vllm_config.kv_transfer_config is not None:
kv_connector = vllm_config.kv_transfer_config.kv_connector
usage_message.report_usage(
get_architecture_class_name(vllm_config.model_config),
usage_context,
extra_kvs={
# Common configuration
"dtype": str(vllm_config.model_config.dtype),
"block_size": vllm_config.cache_config.block_size,
"gpu_memory_utilization": vllm_config.cache_config.gpu_memory_utilization,
"kv_cache_memory_bytes": vllm_config.cache_config.kv_cache_memory_bytes,
# Quantization
"quantization": vllm_config.model_config.quantization,
"kv_cache_dtype": str(vllm_config.cache_config.cache_dtype),
# Feature flags
"enable_lora": bool(vllm_config.lora_config),
"enable_prefix_caching": vllm_config.cache_config.enable_prefix_caching,
"enforce_eager": vllm_config.model_config.enforce_eager,
"disable_custom_all_reduce": parallel_config.disable_custom_all_reduce,
# Distributed parallelism settings
"tensor_parallel_size": parallel_config.tensor_parallel_size,
"data_parallel_size": parallel_config.data_parallel_size,
"pipeline_parallel_size": parallel_config.pipeline_parallel_size,
"enable_expert_parallel": parallel_config.enable_expert_parallel,
# All2All backend for MoE expert parallel
"all2all_backend": parallel_config.all2all_backend,
# KV connector used
"kv_connector": kv_connector,
},
)
_PROFILER_FUNC = None
def record_function_or_nullcontext(name: str) -> AbstractContextManager:
global _PROFILER_FUNC
# fast path assume it is set
if _PROFILER_FUNC is not None:
return _PROFILER_FUNC(name)
func = contextlib.nullcontext
if envs.VLLM_CUSTOM_SCOPES_FOR_PROFILING:
func = record_function
elif envs.VLLM_NVTX_SCOPES_FOR_PROFILING:
import nvtx
func = nvtx.annotate
_PROFILER_FUNC = func
return func(name)
def tensor_data(tensor: torch.Tensor) -> memoryview:
"""Get the raw data of a tensor as a uint8 memoryview, useful for
serializing and hashing.
Args:
tensor: The input tensor.
Returns:
A memoryview of the tensor data as uint8.
"""
return tensor.flatten().contiguous().view(torch.uint8).numpy().data