vllm/tests/entrypoints/openai/test_run_batch.py
Tahsin Tunan 43721bc67f
[CI] Replace large models with tiny alternatives in tests (#24057)
Signed-off-by: Tahsin Tunan <tahsintunan@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-16 15:51:27 +01:00

241 lines
10 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import json
import subprocess
import tempfile
import pytest
from vllm.entrypoints.openai.protocol import BatchRequestOutput
MODEL_NAME = "hmellor/tiny-random-LlamaForCausalLM"
# ruff: noqa: E501
INPUT_BATCH = (
'{{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {{"model": "{0}", "messages": [{{"role": "system", "content": "You are a helpful assistant."}},{{"role": "user", "content": "Hello world!"}}],"max_tokens": 1000}}}}\n'
'{{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {{"model": "{0}", "messages": [{{"role": "system", "content": "You are an unhelpful assistant."}},{{"role": "user", "content": "Hello world!"}}],"max_tokens": 1000}}}}\n'
'{{"custom_id": "request-3", "method": "POST", "url": "/v1/chat/completions", "body": {{"model": "NonExistModel", "messages": [{{"role": "system", "content": "You are an unhelpful assistant."}},{{"role": "user", "content": "Hello world!"}}],"max_tokens": 1000}}}}\n'
'{{"custom_id": "request-4", "method": "POST", "url": "/bad_url", "body": {{"model": "{0}", "messages": [{{"role": "system", "content": "You are an unhelpful assistant."}},{{"role": "user", "content": "Hello world!"}}],"max_tokens": 1000}}}}\n'
'{{"custom_id": "request-5", "method": "POST", "url": "/v1/chat/completions", "body": {{"stream": "True", "model": "{0}", "messages": [{{"role": "system", "content": "You are an unhelpful assistant."}},{{"role": "user", "content": "Hello world!"}}],"max_tokens": 1000}}}}'
).format(MODEL_NAME)
INVALID_INPUT_BATCH = (
'{{"invalid_field": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {{"model": "{0}", "messages": [{{"role": "system", "content": "You are a helpful assistant."}},{{"role": "user", "content": "Hello world!"}}],"max_tokens": 1000}}}}\n'
'{{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {{"model": "{0}", "messages": [{{"role": "system", "content": "You are an unhelpful assistant."}},{{"role": "user", "content": "Hello world!"}}],"max_tokens": 1000}}}}'
).format(MODEL_NAME)
INPUT_EMBEDDING_BATCH = (
'{"custom_id": "request-1", "method": "POST", "url": "/v1/embeddings", "body": {"model": "intfloat/multilingual-e5-small", "input": "You are a helpful assistant."}}\n'
'{"custom_id": "request-2", "method": "POST", "url": "/v1/embeddings", "body": {"model": "intfloat/multilingual-e5-small", "input": "You are an unhelpful assistant."}}\n'
'{"custom_id": "request-3", "method": "POST", "url": "/v1/embeddings", "body": {"model": "intfloat/multilingual-e5-small", "input": "Hello world!"}}\n'
'{"custom_id": "request-4", "method": "POST", "url": "/v1/embeddings", "body": {"model": "NonExistModel", "input": "Hello world!"}}'
)
INPUT_SCORE_BATCH = """{"custom_id": "request-1", "method": "POST", "url": "/score", "body": {"model": "BAAI/bge-reranker-v2-m3", "text_1": "What is the capital of France?", "text_2": ["The capital of Brazil is Brasilia.", "The capital of France is Paris."]}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/score", "body": {"model": "BAAI/bge-reranker-v2-m3", "text_1": "What is the capital of France?", "text_2": ["The capital of Brazil is Brasilia.", "The capital of France is Paris."]}}"""
INPUT_RERANK_BATCH = """{"custom_id": "request-1", "method": "POST", "url": "/rerank", "body": {"model": "BAAI/bge-reranker-v2-m3", "query": "What is the capital of France?", "documents": ["The capital of Brazil is Brasilia.", "The capital of France is Paris."]}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/rerank", "body": {"model": "BAAI/bge-reranker-v2-m3", "query": "What is the capital of France?", "documents": ["The capital of Brazil is Brasilia.", "The capital of France is Paris."]}}
{"custom_id": "request-2", "method": "POST", "url": "/v2/rerank", "body": {"model": "BAAI/bge-reranker-v2-m3", "query": "What is the capital of France?", "documents": ["The capital of Brazil is Brasilia.", "The capital of France is Paris."]}}"""
INPUT_REASONING_BATCH = """{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "Qwen/Qwen3-0.6B", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Solve this math problem: 2+2=?"}]}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "Qwen/Qwen3-0.6B", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "What is the capital of France?"}]}}"""
def test_empty_file():
with (
tempfile.NamedTemporaryFile("w") as input_file,
tempfile.NamedTemporaryFile("r") as output_file,
):
input_file.write("")
input_file.flush()
proc = subprocess.Popen(
[
"vllm",
"run-batch",
"-i",
input_file.name,
"-o",
output_file.name,
"--model",
"intfloat/multilingual-e5-small",
],
)
proc.communicate()
proc.wait()
assert proc.returncode == 0, f"{proc=}"
contents = output_file.read()
assert contents.strip() == ""
def test_completions():
with (
tempfile.NamedTemporaryFile("w") as input_file,
tempfile.NamedTemporaryFile("r") as output_file,
):
input_file.write(INPUT_BATCH)
input_file.flush()
proc = subprocess.Popen(
[
"vllm",
"run-batch",
"-i",
input_file.name,
"-o",
output_file.name,
"--model",
MODEL_NAME,
],
)
proc.communicate()
proc.wait()
assert proc.returncode == 0, f"{proc=}"
contents = output_file.read()
for line in contents.strip().split("\n"):
# Ensure that the output format conforms to the openai api.
# Validation should throw if the schema is wrong.
BatchRequestOutput.model_validate_json(line)
def test_completions_invalid_input():
"""
Ensure that we fail when the input doesn't conform to the openai api.
"""
with (
tempfile.NamedTemporaryFile("w") as input_file,
tempfile.NamedTemporaryFile("r") as output_file,
):
input_file.write(INVALID_INPUT_BATCH)
input_file.flush()
proc = subprocess.Popen(
[
"vllm",
"run-batch",
"-i",
input_file.name,
"-o",
output_file.name,
"--model",
MODEL_NAME,
],
)
proc.communicate()
proc.wait()
assert proc.returncode != 0, f"{proc=}"
def test_embeddings():
with (
tempfile.NamedTemporaryFile("w") as input_file,
tempfile.NamedTemporaryFile("r") as output_file,
):
input_file.write(INPUT_EMBEDDING_BATCH)
input_file.flush()
proc = subprocess.Popen(
[
"vllm",
"run-batch",
"-i",
input_file.name,
"-o",
output_file.name,
"--model",
"intfloat/multilingual-e5-small",
],
)
proc.communicate()
proc.wait()
assert proc.returncode == 0, f"{proc=}"
contents = output_file.read()
for line in contents.strip().split("\n"):
# Ensure that the output format conforms to the openai api.
# Validation should throw if the schema is wrong.
BatchRequestOutput.model_validate_json(line)
@pytest.mark.parametrize("input_batch", [INPUT_SCORE_BATCH, INPUT_RERANK_BATCH])
def test_score(input_batch):
with (
tempfile.NamedTemporaryFile("w") as input_file,
tempfile.NamedTemporaryFile("r") as output_file,
):
input_file.write(input_batch)
input_file.flush()
proc = subprocess.Popen(
[
"vllm",
"run-batch",
"-i",
input_file.name,
"-o",
output_file.name,
"--model",
"BAAI/bge-reranker-v2-m3",
],
)
proc.communicate()
proc.wait()
assert proc.returncode == 0, f"{proc=}"
contents = output_file.read()
for line in contents.strip().split("\n"):
# Ensure that the output format conforms to the openai api.
# Validation should throw if the schema is wrong.
BatchRequestOutput.model_validate_json(line)
# Ensure that there is no error in the response.
line_dict = json.loads(line)
assert isinstance(line_dict, dict)
assert line_dict["error"] is None
def test_reasoning_parser():
"""
Test that reasoning_parser parameter works correctly in run_batch.
"""
with (
tempfile.NamedTemporaryFile("w") as input_file,
tempfile.NamedTemporaryFile("r") as output_file,
):
input_file.write(INPUT_REASONING_BATCH)
input_file.flush()
proc = subprocess.Popen(
[
"vllm",
"run-batch",
"-i",
input_file.name,
"-o",
output_file.name,
"--model",
"Qwen/Qwen3-0.6B",
"--reasoning-parser",
"qwen3",
],
)
proc.communicate()
proc.wait()
assert proc.returncode == 0, f"{proc=}"
contents = output_file.read()
for line in contents.strip().split("\n"):
# Ensure that the output format conforms to the openai api.
# Validation should throw if the schema is wrong.
BatchRequestOutput.model_validate_json(line)
# Ensure that there is no error in the response.
line_dict = json.loads(line)
assert isinstance(line_dict, dict)
assert line_dict["error"] is None
# Check that reasoning_content is present and not empty
reasoning_content = line_dict["response"]["body"]["choices"][0]["message"][
"reasoning_content"
]
assert reasoning_content is not None
assert len(reasoning_content) > 0