vllm/tests/models/language/pooling/test_multi_vector_retrieval.py
2025-10-15 11:14:41 +00:00

46 lines
1.3 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
from transformers import AutoModel
from tests.models.utils import check_embeddings_close
@pytest.mark.parametrize(
"model",
["BAAI/bge-m3"],
)
@pytest.mark.parametrize("dtype", ["half"])
@torch.inference_mode
def test_embed_models(hf_runner, vllm_runner, example_prompts, model: str, dtype: str):
with vllm_runner(
model,
runner="pooling",
max_model_len=None,
) as vllm_model:
vllm_outputs = vllm_model.token_embed(example_prompts)
with hf_runner(
model,
auto_cls=AutoModel,
) as hf_model:
tokenizer = hf_model.tokenizer
hf_outputs = []
for prompt in example_prompts:
inputs = tokenizer([prompt], return_tensors="pt")
inputs = hf_model.wrap_device(inputs)
output = hf_model.model(**inputs)
embedding = output.last_hidden_state[0].float()
# normal
hf_outputs.append(embedding.cpu())
for hf_output, vllm_output in zip(hf_outputs, vllm_outputs):
check_embeddings_close(
embeddings_0_lst=hf_output,
embeddings_1_lst=vllm_output,
name_0="hf",
name_1="vllm",
tol=1e-2,
)