mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-20 02:06:01 +08:00
Signed-off-by: wang.yuqi <noooop@126.com> Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com> Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
168 lines
4.5 KiB
Python
168 lines
4.5 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
import pytest
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from tests.models.utils import softmax
|
|
from vllm.config import PoolerConfig
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model",
|
|
["jason9693/Qwen2.5-1.5B-apeach", "papluca/xlm-roberta-base-language-detection"],
|
|
)
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
|
def test_classify_models_using_activation(
|
|
hf_runner,
|
|
vllm_runner,
|
|
example_prompts,
|
|
model: str,
|
|
dtype: str,
|
|
) -> None:
|
|
with vllm_runner(
|
|
model,
|
|
max_model_len=512,
|
|
dtype=dtype,
|
|
pooler_config=PoolerConfig(use_activation=False),
|
|
) as vllm_model:
|
|
wo_activation_out = vllm_model.classify(example_prompts)
|
|
|
|
with vllm_runner(
|
|
model,
|
|
max_model_len=512,
|
|
dtype=dtype,
|
|
pooler_config=PoolerConfig(use_activation=True),
|
|
) as vllm_model:
|
|
w_activation_out = vllm_model.classify(example_prompts)
|
|
|
|
for wo_activation, w_activation in zip(wo_activation_out, w_activation_out):
|
|
wo_activation = torch.tensor(wo_activation)
|
|
w_activation = torch.tensor(w_activation)
|
|
|
|
assert not torch.allclose(wo_activation, w_activation, atol=1e-2), (
|
|
"pooler_config is not working"
|
|
)
|
|
assert torch.allclose(
|
|
softmax(wo_activation), w_activation, 1e-3 if dtype == "float" else 1e-2
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model",
|
|
[
|
|
"intfloat/multilingual-e5-small",
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
|
def test_embed_models_using_normalize(
|
|
hf_runner,
|
|
vllm_runner,
|
|
example_prompts,
|
|
model: str,
|
|
dtype: str,
|
|
) -> None:
|
|
with vllm_runner(
|
|
model,
|
|
max_model_len=512,
|
|
dtype=dtype,
|
|
pooler_config=PoolerConfig(normalize=False),
|
|
) as vllm_model:
|
|
wo_normalize = torch.tensor(vllm_model.embed(example_prompts))
|
|
|
|
with vllm_runner(
|
|
model,
|
|
max_model_len=512,
|
|
dtype=dtype,
|
|
pooler_config=PoolerConfig(normalize=True),
|
|
) as vllm_model:
|
|
w_normalize = torch.tensor(vllm_model.embed(example_prompts))
|
|
|
|
assert not torch.allclose(wo_normalize, w_normalize, atol=1e-2), (
|
|
"pooler_config normalize is not working"
|
|
)
|
|
assert torch.allclose(
|
|
F.normalize(wo_normalize, p=2, dim=-1), w_normalize, atol=1e-2
|
|
), "w_normal should be close to normal(wo_normal)."
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model",
|
|
[
|
|
"internlm/internlm2-1_8b-reward",
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
|
def test_reward_models_using_activation(
|
|
hf_runner,
|
|
vllm_runner,
|
|
example_prompts,
|
|
model: str,
|
|
dtype: str,
|
|
) -> None:
|
|
with vllm_runner(
|
|
model,
|
|
max_model_len=1024,
|
|
dtype=dtype,
|
|
pooler_config=PoolerConfig(use_activation=False),
|
|
) as vllm_model:
|
|
wo_activation = vllm_model.reward(example_prompts)
|
|
|
|
with vllm_runner(
|
|
model,
|
|
max_model_len=1024,
|
|
dtype=dtype,
|
|
pooler_config=PoolerConfig(use_activation=True),
|
|
) as vllm_model:
|
|
w_activation = vllm_model.reward(example_prompts)
|
|
|
|
for wo, w in zip(wo_activation, w_activation):
|
|
wo = torch.tensor(wo)
|
|
w = torch.tensor(w)
|
|
|
|
assert not torch.allclose(wo, w, atol=1e-2), (
|
|
"pooler_config activation is not working"
|
|
)
|
|
assert torch.allclose(softmax(wo), w, atol=1e-2), (
|
|
"w_activation should be close to activation(wo_activation)."
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model",
|
|
[
|
|
"intfloat/multilingual-e5-small",
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
|
def test_multi_vector_retrieval_models_using_normalize(
|
|
hf_runner,
|
|
vllm_runner,
|
|
example_prompts,
|
|
model: str,
|
|
dtype: str,
|
|
) -> None:
|
|
with vllm_runner(
|
|
model,
|
|
max_model_len=512,
|
|
dtype=dtype,
|
|
pooler_config=PoolerConfig(normalize=False),
|
|
) as vllm_model:
|
|
wo_normalize = vllm_model.token_embed(example_prompts)
|
|
|
|
with vllm_runner(
|
|
model,
|
|
max_model_len=512,
|
|
dtype=dtype,
|
|
pooler_config=PoolerConfig(normalize=True),
|
|
) as vllm_model:
|
|
w_normalize = vllm_model.token_embed(example_prompts)
|
|
|
|
for wo, w in zip(wo_normalize, w_normalize):
|
|
assert not torch.allclose(wo, w, atol=1e-2), (
|
|
"pooler_config normalize is not working"
|
|
)
|
|
assert torch.allclose(F.normalize(wo, p=2, dim=-1), w, atol=1e-2), (
|
|
"w_normal should be close to normal(wo_normal)."
|
|
)
|