wang.yuqi 767c3ab869
[Model][0/N] Improve all pooling task | clean up (#25817)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-10-13 16:44:50 +08:00

367 lines
12 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import tempfile
from collections.abc import Sequence
import mteb
import numpy as np
import requests
import torch
import tests.ci_envs as ci_envs
from tests.models.utils import (
EmbedModelInfo,
RerankModelInfo,
check_embeddings_close,
get_vllm_extra_kwargs,
)
# Most embedding models on the STS12 task (See #17175):
# - Model implementation and minor changes in tensor dtype
# results in differences less than 1e-4
# - Different model results in differences more than 1e-3
# 1e-4 is a good tolerance threshold
MTEB_EMBED_TASKS = ["STS12"]
MTEB_EMBED_TOL = 1e-4
# See #19344
MTEB_RERANK_TASKS = ["NFCorpus"]
MTEB_RERANK_LANGS = ["en"]
MTEB_RERANK_TOL = 2e-3
class VllmMtebEncoder(mteb.Encoder):
def __init__(self, vllm_model):
super().__init__()
self.llm = vllm_model
self.rng = np.random.default_rng(seed=42)
def encode(
self,
sentences: Sequence[str],
*args,
**kwargs,
) -> np.ndarray:
# Hoping to discover potential scheduling
# issues by randomizing the order.
r = self.rng.permutation(len(sentences))
sentences = [sentences[i] for i in r]
outputs = self.llm.embed(sentences, use_tqdm=False)
embeds = np.array(outputs)
embeds = embeds[np.argsort(r)]
return embeds
def predict(
self,
sentences: list[tuple[str, str, str | None]], # query, corpus, prompt
*args,
**kwargs,
) -> np.ndarray:
r = self.rng.permutation(len(sentences))
sentences = [sentences[i] for i in r]
queries = [s[0] for s in sentences]
corpus = [s[1] for s in sentences]
outputs = self.llm.score(
queries, corpus, truncate_prompt_tokens=-1, use_tqdm=False
)
scores = np.array(outputs)
scores = scores[np.argsort(r)]
return scores
class OpenAIClientMtebEncoder(mteb.Encoder):
def __init__(self, model_name: str, client):
super().__init__()
self.model_name = model_name
self.client = client
self.rng = np.random.default_rng(seed=42)
def encode(self, sentences: Sequence[str], *args, **kwargs) -> np.ndarray:
# Hoping to discover potential scheduling
# issues by randomizing the order.
r = self.rng.permutation(len(sentences))
sentences = [sentences[i] for i in r]
embeddings = self.client.embeddings.create(
model=self.model_name, input=sentences
)
outputs = [d.embedding for d in embeddings.data]
embeds = np.array(outputs)
embeds = embeds[np.argsort(r)]
return embeds
class ScoreClientMtebEncoder(mteb.Encoder):
def __init__(self, model_name: str, url):
super().__init__()
self.model_name = model_name
self.url = url
self.rng = np.random.default_rng(seed=42)
def predict(
self,
sentences: list[tuple[str, str, str | None]], # query, corpus, prompt
*args,
**kwargs,
) -> np.ndarray:
r = self.rng.permutation(len(sentences))
sentences = [sentences[i] for i in r]
outputs = []
for query, corpus, prompt in sentences:
outputs.append(self.get_score(query, corpus))
scores = np.array(outputs)
scores = scores[np.argsort(r)]
return scores
def get_score(self, query, corpus):
response = requests.post(
self.url,
json={
"model": self.model_name,
"text_1": query,
"text_2": corpus,
"truncate_prompt_tokens": -1,
},
).json()
return response["data"][0]["score"]
class RerankClientMtebEncoder(ScoreClientMtebEncoder):
def get_score(self, query, corpus):
response = requests.post(
self.url,
json={
"model": self.model_name,
"query": query,
"documents": [corpus],
"truncate_prompt_tokens": -1,
},
).json()
return response["results"][0]["relevance_score"]
def run_mteb_embed_task(encoder, tasks):
tasks = mteb.get_tasks(tasks=tasks)
evaluation = mteb.MTEB(tasks=tasks)
results = evaluation.run(
encoder,
verbosity=0,
output_folder=None,
encode_kwargs={
"show_progress_bar": False,
},
)
main_score = results[0].scores["test"][0]["main_score"]
return main_score
def mteb_test_embed_models(
hf_runner,
vllm_runner,
model_info: EmbedModelInfo,
vllm_extra_kwargs=None,
hf_model_callback=None,
atol=MTEB_EMBED_TOL,
):
vllm_extra_kwargs = get_vllm_extra_kwargs(model_info, vllm_extra_kwargs)
# Test embed_dims, isnan and whether to use normalize
example_prompts = ["The chef prepared a delicious meal." * 1000]
with vllm_runner(
model_info.name,
runner="pooling",
max_model_len=model_info.max_model_len,
**vllm_extra_kwargs,
) as vllm_model:
model_config = vllm_model.llm.llm_engine.model_config
# Confirm whether vllm is using the correct architecture
if model_info.architecture:
assert model_info.architecture in model_config.architectures
# Confirm whether vllm uses the correct default_pooling_type, which
# relates to whether chunked prefill and prefix caching are enabled
assert (
model_config._model_info.default_pooling_type
== model_info.default_pooling_type
)
vllm_main_score = run_mteb_embed_task(
VllmMtebEncoder(vllm_model), MTEB_EMBED_TASKS
)
vllm_dtype = vllm_model.llm.llm_engine.model_config.dtype
head_dtype = model_config.head_dtype
# Test embedding_size, isnan and whether to use normalize
vllm_outputs = vllm_model.embed(example_prompts, truncate_prompt_tokens=-1)
outputs_tensor = torch.tensor(vllm_outputs)
assert not torch.any(torch.isnan(outputs_tensor))
embedding_size = model_config.embedding_size
assert torch.tensor(vllm_outputs).shape[-1] == embedding_size
# Accelerate mteb test by setting
# SentenceTransformers mteb score to a constant
if model_info.mteb_score is None:
with hf_runner(
model_info.name,
is_sentence_transformer=True,
dtype=ci_envs.VLLM_CI_HF_DTYPE or model_info.hf_dtype,
) as hf_model:
# e.g. setting default parameters for the encode method of hf_runner
if hf_model_callback is not None:
hf_model_callback(hf_model)
st_main_score = run_mteb_embed_task(hf_model, MTEB_EMBED_TASKS)
st_dtype = next(hf_model.model.parameters()).dtype
# Check embeddings close to hf outputs
hf_outputs = hf_model.encode(example_prompts)
check_embeddings_close(
embeddings_0_lst=hf_outputs,
embeddings_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
tol=1e-2,
)
else:
st_main_score = model_info.mteb_score
st_dtype = "Constant"
print("Model:", model_info.name)
print("VLLM:", f"dtype:{vllm_dtype}", f"head_dtype:{head_dtype}", vllm_main_score)
print("SentenceTransformers:", st_dtype, st_main_score)
print("Difference:", st_main_score - vllm_main_score)
# We are not concerned that the vllm mteb results are better
# than SentenceTransformers, so we only perform one-sided testing.
assert st_main_score - vllm_main_score < atol
def run_mteb_rerank(cross_encoder, tasks, languages):
with tempfile.TemporaryDirectory() as results_folder:
bm25s = mteb.get_model("bm25s")
tasks = mteb.get_tasks(tasks=tasks, languages=languages)
subset = "default"
eval_splits = ["test"]
evaluation = mteb.MTEB(tasks=tasks)
evaluation.run(
bm25s,
verbosity=0,
eval_splits=eval_splits,
save_predictions=True,
output_folder=f"{results_folder}/stage1",
encode_kwargs={"show_progress_bar": False},
)
results = evaluation.run(
cross_encoder,
verbosity=0,
eval_splits=eval_splits,
top_k=10,
save_predictions=True,
output_folder=f"{results_folder}/stage2",
previous_results=f"{results_folder}/stage1/NFCorpus_{subset}_predictions.json",
encode_kwargs={"show_progress_bar": False},
)
main_score = results[0].scores["test"][0]["main_score"]
return main_score
def mteb_test_rerank_models_hf(
hf_runner, model_name, hf_dtype="float32", hf_model_callback=None
):
with hf_runner(model_name, is_cross_encoder=True, dtype=hf_dtype) as hf_model:
original_predict = hf_model.predict
def _predict(
sentences: list[tuple[str, str, str | None]], # query, corpus, prompt
*args,
**kwargs,
):
# vllm and st both remove the prompt, fair comparison.
prompts = [(s[0], s[1]) for s in sentences]
return original_predict(prompts, *args, **kwargs, batch_size=8)
hf_model.predict = _predict
hf_model.original_predict = original_predict
if hf_model_callback is not None:
hf_model_callback(hf_model)
st_main_score = run_mteb_rerank(
hf_model, tasks=MTEB_RERANK_TASKS, languages=MTEB_RERANK_LANGS
)
st_dtype = next(hf_model.model.model.parameters()).dtype
return st_main_score, st_dtype
def mteb_test_rerank_models(
hf_runner,
vllm_runner,
model_info: RerankModelInfo,
vllm_extra_kwargs=None,
hf_model_callback=None,
vllm_mteb_encoder=VllmMtebEncoder,
atol=MTEB_RERANK_TOL,
):
vllm_extra_kwargs = get_vllm_extra_kwargs(model_info, vllm_extra_kwargs)
with vllm_runner(
model_info.name,
runner="pooling",
max_model_len=None,
max_num_seqs=8,
**vllm_extra_kwargs,
) as vllm_model:
model_config = vllm_model.llm.llm_engine.model_config
# Confirm whether vllm is using the correct architecture
if model_info.architecture:
assert model_info.architecture in model_config.architectures
# Score API is only enabled for num_labels == 1
assert model_config.hf_config.num_labels == 1
# Confirm whether vllm uses the correct default_pooling_type, which
# relates to whether chunked prefill and prefix caching are enabled
assert (
model_config._model_info.default_pooling_type
== model_info.default_pooling_type
)
vllm_main_score = run_mteb_rerank(
vllm_mteb_encoder(vllm_model),
tasks=MTEB_RERANK_TASKS,
languages=MTEB_RERANK_LANGS,
)
vllm_dtype = model_config.dtype
head_dtype = model_config.head_dtype
# Accelerate mteb test by setting
# SentenceTransformers mteb score to a constant
if model_info.mteb_score is None:
st_main_score, st_dtype = mteb_test_rerank_models_hf(
hf_runner, model_info.name, model_info.hf_dtype, hf_model_callback
)
else:
st_main_score = model_info.mteb_score
st_dtype = "Constant"
print("Model:", model_info.name)
print("VLLM:", f"dtype:{vllm_dtype}", f"head_dtype:{head_dtype}", vllm_main_score)
print("SentenceTransformers:", st_dtype, st_main_score)
print("Difference:", st_main_score - vllm_main_score)
# We are not concerned that the vllm mteb results are better
# than SentenceTransformers, so we only perform one-sided testing.
assert st_main_score - vllm_main_score < atol