2025-10-13 03:21:48 -07:00

127 lines
3.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from functools import partial
import pytest
from tests.models.language.pooling.embed_utils import (
check_embeddings_close,
correctness_test_embed_models,
matryoshka_fy,
)
from tests.models.utils import (
CLSPoolingEmbedModelInfo,
CLSPoolingRerankModelInfo,
EmbedModelInfo,
RerankModelInfo,
)
from vllm import PoolingParams
from .mteb_utils import mteb_test_embed_models, mteb_test_rerank_models
EMBEDDING_MODELS = [
CLSPoolingEmbedModelInfo(
"jinaai/jina-embeddings-v3",
mteb_score=0.824413164,
architecture="XLMRobertaModel",
is_matryoshka=True,
dtype="float32",
)
]
RERANK_MODELS = [
CLSPoolingRerankModelInfo(
"jinaai/jina-reranker-v2-base-multilingual",
mteb_score=0.33643,
architecture="XLMRobertaForSequenceClassification",
)
]
@pytest.mark.parametrize("model_info", EMBEDDING_MODELS)
def test_embed_models_mteb(hf_runner, vllm_runner, model_info: EmbedModelInfo) -> None:
def hf_model_callback(model):
model.encode = partial(model.encode, task="text-matching")
mteb_test_embed_models(
hf_runner, vllm_runner, model_info, hf_model_callback=hf_model_callback
)
@pytest.mark.parametrize("model_info", EMBEDDING_MODELS)
def test_embed_models_correctness(
hf_runner, vllm_runner, model_info: EmbedModelInfo, example_prompts
) -> None:
def hf_model_callback(model):
model.encode = partial(model.encode, task="text-matching")
correctness_test_embed_models(
hf_runner,
vllm_runner,
model_info,
example_prompts,
hf_model_callback=hf_model_callback,
)
@pytest.mark.parametrize("model_info", RERANK_MODELS)
def test_rerank_models_mteb(
hf_runner, vllm_runner, model_info: RerankModelInfo
) -> None:
mteb_test_rerank_models(hf_runner, vllm_runner, model_info)
@pytest.mark.parametrize("model_info", EMBEDDING_MODELS)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("dimensions", [16, 32])
def test_matryoshka(
hf_runner,
vllm_runner,
model_info,
dtype: str,
dimensions: int,
example_prompts,
monkeypatch,
) -> None:
if not model_info.is_matryoshka:
pytest.skip("Model is not matryoshka")
# ST will strip the input texts, see test_embedding.py
example_prompts = [str(s).strip() for s in example_prompts]
with hf_runner(
model_info.name,
dtype=dtype,
is_sentence_transformer=True,
) as hf_model:
hf_outputs = hf_model.encode(example_prompts, task="text-matching")
hf_outputs = matryoshka_fy(hf_outputs, dimensions)
with vllm_runner(
model_info.name, runner="pooling", dtype=dtype, max_model_len=None
) as vllm_model:
assert vllm_model.llm.llm_engine.model_config.is_matryoshka
matryoshka_dimensions = (
vllm_model.llm.llm_engine.model_config.matryoshka_dimensions
)
assert matryoshka_dimensions is not None
if dimensions not in matryoshka_dimensions:
with pytest.raises(ValueError):
vllm_model.embed(
example_prompts, pooling_params=PoolingParams(dimensions=dimensions)
)
else:
vllm_outputs = vllm_model.embed(
example_prompts, pooling_params=PoolingParams(dimensions=dimensions)
)
check_embeddings_close(
embeddings_0_lst=hf_outputs,
embeddings_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
tol=1e-2,
)