vllm/tests/compile/test_fusions_e2e.py

307 lines
10 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from __future__ import annotations
import itertools
import logging
from collections.abc import Iterable
from typing import Any, NamedTuple
import pytest
import regex as re
from tests.v1.attention.utils import _Backend
from vllm import LLM, SamplingParams
from vllm.config import CompilationConfig, CompilationMode, CUDAGraphMode, PassConfig
from vllm.platforms import current_platform
from vllm.utils.flashinfer import has_flashinfer
from vllm.utils.torch_utils import is_torch_equal_or_newer
from ..utils import flat_product, multi_gpu_test
class ModelBackendTestCase(NamedTuple):
model_name: str
model_kwargs: dict[str, Any]
backend: _Backend
attention_fusions: int
allreduce_fusions: int | None = None
MODELS_FP8: list[ModelBackendTestCase] = []
MODELS_FP4: list[ModelBackendTestCase] = []
MODELS: list[ModelBackendTestCase] = [] # tp-only
if current_platform.is_cuda():
MODELS_FP8 = [
ModelBackendTestCase(
# Use smaller model for L40s in CI
model_name="RedHatAI/Meta-Llama-3.1-8B-Instruct-FP8",
model_kwargs=dict(max_model_len=1024),
backend=_Backend.TRITON_ATTN,
attention_fusions=32,
allreduce_fusions=65,
),
ModelBackendTestCase(
model_name="nvidia/Llama-4-Scout-17B-16E-Instruct-FP8",
model_kwargs=dict(max_model_len=1024, kv_cache_dtype="fp8"),
backend=_Backend.FLASHINFER,
attention_fusions=48,
allreduce_fusions=96,
),
]
MODELS_FP4 = [
ModelBackendTestCase(
model_name="nvidia/Llama-3.1-8B-Instruct-FP4",
model_kwargs=dict(max_model_len=1024, kv_cache_dtype="fp8"),
backend=_Backend.FLASHINFER,
attention_fusions=32,
allreduce_fusions=65,
),
]
# TP only
MODELS = [
ModelBackendTestCase(
model_name="meta-llama/Llama-3.1-8B-Instruct",
model_kwargs=dict(max_model_len=1024),
backend=_Backend.TRITON_ATTN,
attention_fusions=0,
allreduce_fusions=65,
),
]
elif current_platform.is_rocm():
MODELS_FP8 = [
ModelBackendTestCase(
model_name="amd/Llama-3.1-8B-Instruct-FP8-KV",
model_kwargs=dict(max_model_len=1024),
backend=_Backend.TRITON_ATTN,
attention_fusions=32,
),
ModelBackendTestCase(
model_name="amd/Llama-3.1-8B-Instruct-FP8-KV",
model_kwargs=dict(max_model_len=1024),
backend=_Backend.ROCM_ATTN,
attention_fusions=32,
),
ModelBackendTestCase(
model_name="amd/Llama-3.1-8B-Instruct-FP8-KV",
model_kwargs=dict(max_model_len=1024),
backend=_Backend.ROCM_AITER_UNIFIED_ATTN,
attention_fusions=32,
),
]
CUSTOM_OPS_FP8 = ["-quant_fp8", "+quant_fp8"]
@pytest.mark.parametrize(
"model_name, model_kwargs, backend, "
"attention_fusions, allreduce_fusions, custom_ops",
# Test attention+quant_fp8 fusion with custom and torch impls of QuantFP8
list(flat_product(MODELS_FP8, CUSTOM_OPS_FP8))
# quant_fp4 only has the custom impl
+ list(flat_product(MODELS_FP4, [""])),
)
@pytest.mark.parametrize("inductor_graph_partition", [True, False])
def test_attn_quant(
model_name: str,
model_kwargs: dict[str, Any],
backend: _Backend,
attention_fusions: int,
allreduce_fusions: int,
custom_ops: str,
inductor_graph_partition: bool,
caplog_mp_spawn,
monkeypatch,
):
if backend == _Backend.FLASHINFER and (
not current_platform.is_device_capability((10, 0)) or not has_flashinfer()
):
pytest.skip("FlashInfer attn fusion requires Blackwell and flashinfer")
if inductor_graph_partition and not is_torch_equal_or_newer("2.9.0.dev"):
pytest.skip("Inductor graph partition requires torch>=2.9")
custom_ops_list = custom_ops.split(",") if custom_ops else []
if inductor_graph_partition:
mode = CUDAGraphMode.FULL_AND_PIECEWISE
splitting_ops: list[str] | None = None
else:
# FIXME: Llama-4-Scout-17B-16E-Instruct-FP8 + FlashInfer + Blackwell end at
# CUDAGraphMode.NONE here because it derives an attention backend that
# does not support full cudagraphs
mode = CUDAGraphMode.FULL_DECODE_ONLY
splitting_ops = []
# Disable, compile cache to make sure custom passes run.
# Otherwise, we can't verify fusion happened through the logs.
monkeypatch.setenv("VLLM_DISABLE_COMPILE_CACHE", "1")
# To capture subprocess logs, we need to know whether spawn or fork is used.
# Force spawn as it is more general.
monkeypatch.setenv("VLLM_WORKER_MULTIPROC_METHOD", "spawn")
monkeypatch.setenv("VLLM_ATTENTION_BACKEND", backend.name)
compilation_config = CompilationConfig(
# Testing properties
custom_ops=custom_ops_list,
use_inductor_graph_partition=inductor_graph_partition,
cudagraph_mode=mode,
splitting_ops=splitting_ops,
# Common
mode=CompilationMode.VLLM_COMPILE,
pass_config=PassConfig(enable_attn_fusion=True, enable_noop=True),
# Inductor caches custom passes by default as well via uuid
inductor_compile_config={"force_disable_caches": True},
)
with caplog_mp_spawn(logging.DEBUG) as log_holder:
run_model(compilation_config, model_name, **model_kwargs)
matches = re.findall(
r"fusion_attn.py:\d+] Fused quant onto (\d+) attention nodes",
log_holder.text,
)
assert len(matches) == 1, log_holder.text
assert int(matches[0]) == attention_fusions
CUSTOM_OPS_RMS_NORM = ["-rms_norm", "+rms_norm"]
def custom_ops_product(*custom_ops_lists: list[str]) -> Iterable[str]:
for op_list in itertools.product(*custom_ops_lists):
yield ",".join(op_list)
@multi_gpu_test(num_gpus=2)
@pytest.mark.parametrize(
"model_name, model_kwargs, backend, "
"attention_fusions, allreduce_fusions, custom_ops",
# Toggle RMSNorm and QuantFP8 for FP8 models
list(
flat_product(
MODELS_FP8, custom_ops_product(CUSTOM_OPS_FP8, CUSTOM_OPS_RMS_NORM)
)
)
# Toggle RMSNorm for FP4 models and unquant models
+ list(flat_product(MODELS_FP4 + MODELS, CUSTOM_OPS_RMS_NORM)),
)
@pytest.mark.parametrize("inductor_graph_partition", [True, False])
@pytest.mark.skipif(
not current_platform.is_cuda()
or not has_flashinfer()
or not current_platform.has_device_capability(90),
reason="allreduce+rmsnorm fusion requires flashinfer",
)
def test_tp2_attn_quant_allreduce_rmsnorm(
model_name: str,
model_kwargs: dict,
backend: _Backend,
attention_fusions: int,
allreduce_fusions: int,
custom_ops: str,
inductor_graph_partition: bool,
caplog_mp_spawn,
monkeypatch,
):
if inductor_graph_partition and not is_torch_equal_or_newer("2.9.0.dev"):
pytest.skip("Inductor graph partition requires torch>=2.9")
custom_ops_list = custom_ops.split(",") if custom_ops else []
if inductor_graph_partition:
mode = CUDAGraphMode.FULL_AND_PIECEWISE
splitting_ops: list[str] | None = None
else:
mode = CUDAGraphMode.FULL_DECODE_ONLY
splitting_ops = []
# Disable, compile cache to make sure custom passes run.
# Otherwise, we can't verify fusion happened through the logs.
monkeypatch.setenv("VLLM_DISABLE_COMPILE_CACHE", "1")
# To capture subprocess logs, we need to know whether spawn or fork is used.
# Force spawn as it is more general.
monkeypatch.setenv("VLLM_WORKER_MULTIPROC_METHOD", "spawn")
monkeypatch.setenv("VLLM_ATTENTION_BACKEND", backend.name)
compilation_config = CompilationConfig(
# Testing properties
use_inductor_graph_partition=inductor_graph_partition,
cudagraph_mode=mode,
custom_ops=custom_ops_list,
splitting_ops=splitting_ops,
# Common
mode=CompilationMode.VLLM_COMPILE,
pass_config=PassConfig(
enable_attn_fusion=True,
enable_noop=True,
enable_fi_allreduce_fusion=True,
),
# Inductor caches custom passes by default as well via uuid
inductor_compile_config={"force_disable_caches": True},
)
with caplog_mp_spawn(logging.DEBUG) as log_holder:
run_model(
compilation_config, model_name, tensor_parallel_size=2, **model_kwargs
)
matches = re.findall(
r"fusion_attn.py:\d+] Fused quant onto (\d+) attention nodes",
log_holder.text,
)
assert len(matches) == 2, log_holder.text
assert int(matches[0]) == attention_fusions
assert int(matches[1]) == attention_fusions
matches = re.findall(
r"collective_fusion.py:\d+] Replaced (\d+) patterns",
log_holder.text,
)
assert len(matches) == 2, log_holder.text
assert int(matches[0]) == allreduce_fusions
assert int(matches[1]) == allreduce_fusions
def run_model(compile_config: int | CompilationConfig, model: str, **model_kwargs):
compilation_config = (
compile_config
if isinstance(compile_config, CompilationConfig)
else CompilationConfig(mode=compile_config)
)
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
sampling_params = SamplingParams(temperature=0)
# Allow override from model_kwargs
model_kwargs = {"tensor_parallel_size": 1, **model_kwargs}
model_kwargs = {"disable_custom_all_reduce": True, **model_kwargs}
# No cudagraphs by default
if compilation_config.cudagraph_mode is None:
compilation_config.cudagraph_mode = CUDAGraphMode.NONE
llm = LLM(
model=model,
compilation_config=compilation_config,
**model_kwargs,
)
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")