mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 17:15:23 +08:00
452 lines
18 KiB
Python
452 lines
18 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
# Copyright 2024 The vLLM team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Wrapper around `transformers` models"""
|
|
import re
|
|
from itertools import chain
|
|
from typing import Iterable, Literal, Optional, Union
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import AutoModel, PretrainedConfig, PreTrainedModel
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
|
|
|
|
from vllm.attention import Attention
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import (CacheConfig, DeviceConfig, ModelConfig,
|
|
ParallelConfig, VllmConfig)
|
|
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
|
|
from vllm.distributed.utils import get_pp_indices
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
|
ReplicatedLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead, VocabParallelEmbedding)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
from .interfaces import SupportsLoRA, SupportsPP, SupportsQuant
|
|
from .utils import (AutoWeightsLoader, PPMissingLayer, WeightsMapper,
|
|
is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory, maybe_prefix)
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
def vllm_flash_attention_forward(
|
|
# Transformers args
|
|
module: torch.nn.Module,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
attention_mask: torch.Tensor,
|
|
# Transformers kwargs
|
|
scaling: Optional[float] = None,
|
|
# vLLM kwargs
|
|
attention_instances: Optional[dict[Attention]] = None,
|
|
**kwargs):
|
|
self_attn = attention_instances[module.layer_idx]
|
|
if scaling is not None:
|
|
self_attn.impl.scale = float(scaling)
|
|
hidden = query.shape[-2]
|
|
query, key, value = (x.transpose(1, 2) for x in (query, key, value))
|
|
query, key, value = (x.reshape(hidden, -1) for x in (query, key, value))
|
|
return self_attn.forward(query, key, value), None
|
|
|
|
|
|
ALL_ATTENTION_FUNCTIONS["vllm"] = vllm_flash_attention_forward
|
|
|
|
|
|
def log_replacement(name: str, old_module: nn.Module, new_module: nn.Module):
|
|
logger.debug("%s: %s -> %s", name, old_module, new_module)
|
|
|
|
|
|
def replace_linear_class(
|
|
linear: nn.Linear, style: Literal["colwise", "rowwise"],
|
|
quant_config: QuantizationConfig
|
|
) -> Union[ColumnParallelLinear, RowParallelLinear]:
|
|
"""
|
|
Replace nn.Linear with one of vLLM's tensor parallel linear classes.
|
|
|
|
Args:
|
|
linear (nn.Linear): `nn.Linear` to be replaced.
|
|
style (str): Tensor parallel style of the new linear, e.g. "colwise".
|
|
quant_config (QuantConfig): Quantization config for the new linear.
|
|
Returns:
|
|
Union[ColumnParallelLinear, RowParallelLinear]: The new linear.
|
|
"""
|
|
|
|
if not isinstance(style, str):
|
|
raise ValueError(
|
|
f"Unsupported parallel style type {type(style)}, expected str")
|
|
|
|
vllm_linear_cls = {
|
|
"colwise": ColumnParallelLinear,
|
|
"rowwise": RowParallelLinear,
|
|
}.get(style, ReplicatedLinear)
|
|
|
|
return vllm_linear_cls(
|
|
input_size=linear.in_features,
|
|
output_size=linear.out_features,
|
|
bias=linear.bias is not None,
|
|
quant_config=quant_config,
|
|
return_bias=False,
|
|
)
|
|
|
|
|
|
class TransformersModel(nn.Module):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
logger.info("Using Transformers backend.")
|
|
|
|
config: PretrainedConfig = vllm_config.model_config.hf_config
|
|
cache_config: CacheConfig = vllm_config.cache_config
|
|
device_config: DeviceConfig = vllm_config.device_config
|
|
model_config: ModelConfig = vllm_config.model_config
|
|
parallel_config: ParallelConfig = vllm_config.parallel_config
|
|
quant_config: QuantizationConfig = vllm_config.quant_config
|
|
|
|
self.config = config
|
|
self.cache_config = cache_config
|
|
self.device_config = device_config
|
|
self.model_config = model_config
|
|
self.parallel_config = parallel_config
|
|
self.quant_config = quant_config
|
|
|
|
self.pp_group = get_pp_group()
|
|
self.pp_size = self.pp_group.world_size
|
|
self.pp_rank = self.pp_group.rank_in_group
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
|
|
# Use meta device to delay allocating GPU tensors
|
|
with torch.device("meta"):
|
|
# FIXME(Isotr0py): We need to refactor this part in the future to
|
|
# avoid registering an extra model layer, otherwise we will need a
|
|
# weights mapper to rename weights.
|
|
self.model: PreTrainedModel = AutoModel.from_config(
|
|
config,
|
|
attn_implementation="vllm",
|
|
torch_dtype=model_config.dtype,
|
|
trust_remote_code=model_config.trust_remote_code,
|
|
)
|
|
|
|
self.pipeline_parallel()
|
|
self.tensor_parallel()
|
|
|
|
# Input embeddings
|
|
if not isinstance(self.model.get_input_embeddings(), PPMissingLayer):
|
|
self.model.set_input_embeddings(
|
|
VocabParallelEmbedding(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
org_num_embeddings=config.vocab_size,
|
|
quant_config=quant_config,
|
|
))
|
|
|
|
# Attention layers
|
|
self.attention_instances = self.create_attention_instances()
|
|
|
|
# Initialize buffers (e.g. rotary embedding inverse frequency)
|
|
self.init_buffers(self.model)
|
|
|
|
# Move remaining meta tensors to device (should happen last)
|
|
self.meta_to_empty(self.model)
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
make_empty_intermediate_tensors_factory(["hidden_states"],
|
|
config.hidden_size))
|
|
|
|
def pipeline_parallel(self):
|
|
"""
|
|
Apply the model's pipeline parallelization plan.
|
|
"""
|
|
if self.pp_size <= 1:
|
|
return
|
|
|
|
if not self.model.supports_pp_plan:
|
|
raise ValueError(
|
|
f"{type(self.model)} does not support pipeline parallel yet!")
|
|
|
|
module_lists = []
|
|
module_list_idx = None
|
|
pp_plan = list(self.model._pp_plan.keys())
|
|
for i, name in enumerate(pp_plan):
|
|
if isinstance(getattr(self.model, name), nn.ModuleList):
|
|
module_lists.append(name)
|
|
module_list_idx = i
|
|
|
|
if len(module_lists) > 1:
|
|
raise ValueError(
|
|
"Pipeline parallel of models with multiple `ModuleList`s "
|
|
"in the base model are not supported yet!")
|
|
if module_list_idx is None:
|
|
raise ValueError(
|
|
f"Could not find `ModuleList` in {type(self.model)}")
|
|
|
|
# Layers before module list
|
|
for name in pp_plan[:module_list_idx]:
|
|
if self.pp_group.is_first_rank or (self.config.tie_word_embeddings
|
|
and self.pp_group.is_last_rank):
|
|
continue
|
|
setattr(self.model, name, PPMissingLayer())
|
|
|
|
# Module list
|
|
start_layer, end_layer = get_pp_indices(self.config.num_hidden_layers,
|
|
self.pp_rank, self.pp_size)
|
|
layers_name = pp_plan[module_list_idx]
|
|
layers = getattr(self.model, layers_name)
|
|
for i in range(len(layers)):
|
|
if start_layer <= i and i < end_layer:
|
|
continue
|
|
layers[i] = PPMissingLayer(return_tuple=True)
|
|
|
|
# Layers after module list
|
|
for name in pp_plan[module_list_idx + 1:]:
|
|
# Modules that should be on last rank
|
|
if not self.pp_group.is_last_rank:
|
|
setattr(self.model, name, PPMissingLayer())
|
|
|
|
def tensor_parallel(self):
|
|
"""
|
|
Apply the model's tensor parallelization plan.
|
|
Currently only supports linear layers.
|
|
"""
|
|
if not self.model.supports_tp_plan:
|
|
if self.tp_size <= 1:
|
|
return
|
|
|
|
raise ValueError(
|
|
f"{type(self.model)} does not support tensor parallel yet!")
|
|
|
|
tp_plan = self.model._tp_plan
|
|
|
|
def _tensor_parallel(module: nn.Module, prefix: str = ""):
|
|
for child_name, child_module in module.named_children():
|
|
qual_name = maybe_prefix(prefix, child_name)
|
|
for pattern, style in tp_plan.items():
|
|
if re.match(pattern, qual_name) and isinstance(
|
|
child_module, nn.Linear):
|
|
new_module = replace_linear_class(
|
|
child_module, style, self.quant_config)
|
|
setattr(module, child_name, new_module)
|
|
log_replacement(qual_name, child_module, new_module)
|
|
else:
|
|
_tensor_parallel(child_module, prefix=qual_name)
|
|
|
|
_tensor_parallel(self.model)
|
|
|
|
def create_attention_instances(self) -> dict[int, Attention]:
|
|
"""
|
|
Create `Attention` instances to inform KV cache allocation.
|
|
"""
|
|
num_heads = self.model_config.get_num_attention_heads(
|
|
self.parallel_config)
|
|
head_size = self.model_config.get_head_size()
|
|
num_kv_heads = self.model_config.get_num_kv_heads(self.parallel_config)
|
|
start, end = get_pp_indices(self.config.num_hidden_layers,
|
|
self.pp_rank, self.pp_size)
|
|
return {
|
|
i:
|
|
Attention(
|
|
num_heads=num_heads,
|
|
head_size=head_size,
|
|
# NOTE: We use Llama scale as default, if it's set by
|
|
# Transformers, it's updated in vllm_flash_attention_forward
|
|
scale=head_size**-0.5,
|
|
num_kv_heads=num_kv_heads,
|
|
cache_config=self.cache_config,
|
|
quant_config=self.quant_config,
|
|
prefix=f"{i}.attn")
|
|
for i in range(start, end)
|
|
}
|
|
|
|
def init_buffers(self, module: nn.Module):
|
|
"""
|
|
If a `buffer` is on the `meta` device, then its parent
|
|
`module` is the original module created by:
|
|
|
|
```python
|
|
with torch.device("meta"):
|
|
self.model: PreTrainedModel = AutoModel.from_config(...)
|
|
```
|
|
|
|
This means that:
|
|
- `type(module)` is a class from `transformers`
|
|
- This class is constructed using a `PretrainedConfig`
|
|
"""
|
|
for name, buffer in module.named_buffers(recurse=False):
|
|
if buffer.device == torch.device("meta"):
|
|
new_buffer = getattr(type(module)(self.config), name)
|
|
setattr(module, name, new_buffer)
|
|
for child in module.children():
|
|
self.init_buffers(child)
|
|
|
|
def meta_to_empty(self, module: nn.Module):
|
|
tensors = list(chain(module.buffers(), module.parameters()))
|
|
if tensors and all(t.device == torch.device("meta") for t in tensors):
|
|
module.to_empty(device=self.device_config.device)
|
|
return # We can stop recursing because to_empty is recursive
|
|
for child in module.children():
|
|
self.meta_to_empty(child)
|
|
|
|
def get_input_embeddings(self) -> nn.Module:
|
|
return self.model.get_input_embeddings()
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor],
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
if not get_pp_group().is_first_rank:
|
|
assert intermediate_tensors is not None
|
|
input_ids = None
|
|
inputs_embeds = intermediate_tensors["hidden_states"]
|
|
|
|
if input_ids is not None:
|
|
input_ids = input_ids[None, ...]
|
|
if inputs_embeds is not None:
|
|
inputs_embeds = inputs_embeds[None, ...]
|
|
|
|
hidden_states = self.model(
|
|
input_ids=input_ids,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=False,
|
|
position_ids=positions[None, ...],
|
|
attention_instances=self.attention_instances,
|
|
return_dict=False)[0][0, ...] # we remove batch dimension for now
|
|
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors({"hidden_states": hidden_states})
|
|
|
|
return hidden_states
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str,
|
|
torch.Tensor]]) -> set[str]:
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params = set[str]()
|
|
for name, loaded_weight in weights:
|
|
# Use "model" instead of base_model_prefix because
|
|
# the base model attribute in vLLM is always `model`
|
|
if not name.startswith(prefix := "model."):
|
|
name = prefix + name
|
|
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
if name in params_dict:
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
@support_torch_compile
|
|
class TransformersForCausalLM(nn.Module, SupportsQuant, SupportsLoRA,
|
|
SupportsPP):
|
|
embedding_padding_modules = ["lm_head"]
|
|
embedding_modules = ["embed_tokens"
|
|
] # TODO transformers will have a util to get it
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config: PretrainedConfig = vllm_config.model_config.hf_config
|
|
quant_config: QuantizationConfig = vllm_config.quant_config
|
|
|
|
self.config = config
|
|
|
|
self.model = TransformersModel(vllm_config=vllm_config, prefix=prefix)
|
|
|
|
if get_pp_group().is_last_rank:
|
|
self.unpadded_vocab_size = config.vocab_size
|
|
self.lm_head = ParallelLMHead(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config,
|
|
prefix=maybe_prefix(prefix, "lm_head"),
|
|
)
|
|
if config.tie_word_embeddings:
|
|
self.lm_head = self.lm_head.tie_weights(
|
|
self.model.get_input_embeddings())
|
|
|
|
logit_scale = getattr(config, "logit_scale", 1.0)
|
|
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
|
|
config.vocab_size,
|
|
logit_scale)
|
|
else:
|
|
self.lm_head = PPMissingLayer()
|
|
|
|
self.sampler = get_sampler()
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.model.make_empty_intermediate_tensors)
|
|
|
|
# FIXME(Isotr0py): Don't use any weights mapper for Transformers backend,
|
|
# this makes thing complicated. We need to remove this mapper after refactor
|
|
# `TransformersModel` in the future.
|
|
@property
|
|
def hf_to_vllm_mapper(self):
|
|
prefix_mapper = {
|
|
name: "model." + name
|
|
for name, _ in self.model.model.named_children()
|
|
}
|
|
return WeightsMapper(
|
|
orig_to_new_substr={"model.": "model.model."},
|
|
orig_to_new_prefix=prefix_mapper,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor],
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
model_output = self.model(input_ids, positions, intermediate_tensors,
|
|
inputs_embeds)
|
|
return model_output
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[torch.Tensor]:
|
|
logits = self.logits_processor(self.lm_head, hidden_states,
|
|
sampling_metadata)
|
|
return logits
|
|
|
|
def sample(self, logits: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata) -> Optional[SamplerOutput]:
|
|
|
|
next_tokens = self.sampler(logits, sampling_metadata)
|
|
return next_tokens
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str,
|
|
torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(
|
|
self,
|
|
skip_prefixes=(["lm_head."]
|
|
if self.config.tie_word_embeddings else None),
|
|
)
|
|
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
|