mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-14 18:25:01 +08:00
455 lines
16 KiB
Python
455 lines
16 KiB
Python
import functools
|
|
from collections import UserDict
|
|
from dataclasses import dataclass
|
|
from typing import (TYPE_CHECKING, Any, Dict, Generic, Mapping, Optional,
|
|
Protocol, Sequence, Type, TypeVar)
|
|
|
|
import torch.nn as nn
|
|
|
|
from vllm.inputs import InputProcessingContext
|
|
from vllm.logger import init_logger
|
|
from vllm.transformers_utils.tokenizer import AnyTokenizer
|
|
from vllm.utils import ClassRegistry
|
|
|
|
from .audio import AudioPlugin
|
|
from .base import MultiModalInputMapper, MultiModalPlugin, MultiModalTokensCalc
|
|
from .image import ImagePlugin
|
|
from .inputs import MultiModalDataDict, MultiModalKwargs, NestedTensors
|
|
from .processing import (BaseMultiModalProcessor, BaseProcessingInfo,
|
|
ProcessingCache)
|
|
from .profiling import BaseDummyInputsBuilder, MultiModalProfiler
|
|
from .utils import cached_get_tokenizer
|
|
from .video import VideoPlugin
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.config import ModelConfig
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
# TODO: Tune the MM cache size
|
|
MM_CACHE_SIZE = 256
|
|
|
|
N = TypeVar("N", bound=Type[nn.Module])
|
|
_I = TypeVar("_I", bound=BaseProcessingInfo)
|
|
_I_co = TypeVar("_I_co", bound=BaseProcessingInfo, covariant=True)
|
|
|
|
|
|
class ProcessingInfoFactory(Protocol[_I_co]):
|
|
"""Constructs a :class:`MultiModalProcessor` instance from the context."""
|
|
|
|
def __call__(
|
|
self,
|
|
ctx: InputProcessingContext,
|
|
) -> _I_co:
|
|
...
|
|
|
|
|
|
class DummyInputsBuilderFactory(Protocol[_I]):
|
|
"""
|
|
Constructs a :class:`BaseDummyInputsBuilder` instance from the context.
|
|
"""
|
|
|
|
def __call__(self, info: _I) -> BaseDummyInputsBuilder[_I]:
|
|
...
|
|
|
|
|
|
class MultiModalProcessorFactory(Protocol[_I]):
|
|
"""Constructs a :class:`MultiModalProcessor` instance from the context."""
|
|
|
|
def __call__(
|
|
self,
|
|
info: _I,
|
|
dummy_inputs: BaseDummyInputsBuilder[_I],
|
|
*,
|
|
cache: Optional[ProcessingCache] = None,
|
|
) -> BaseMultiModalProcessor[_I]:
|
|
...
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class _ProcessorFactories(Generic[_I]):
|
|
info: ProcessingInfoFactory[_I]
|
|
processor: MultiModalProcessorFactory[_I]
|
|
dummy_inputs: DummyInputsBuilderFactory[_I]
|
|
|
|
def build_processor(
|
|
self,
|
|
ctx: InputProcessingContext,
|
|
*,
|
|
cache: Optional[ProcessingCache] = None,
|
|
):
|
|
info = self.info(ctx)
|
|
dummy_inputs_builder = self.dummy_inputs(info)
|
|
return self.processor(info, dummy_inputs_builder, cache=cache)
|
|
|
|
|
|
class _MultiModalLimits(UserDict["ModelConfig", Dict[str, int]]):
|
|
"""
|
|
Wraps `_limits_by_model` for a more informative error message
|
|
when attempting to access a model that does not exist.
|
|
"""
|
|
|
|
def __getitem__(self, key: "ModelConfig") -> Dict[str, int]:
|
|
try:
|
|
return super().__getitem__(key)
|
|
except KeyError as exc:
|
|
msg = (f"Cannot find `mm_limits` for model={key.model}. Did you "
|
|
"forget to call `init_mm_limits_per_prompt`?")
|
|
raise KeyError(msg) from exc
|
|
|
|
|
|
class MultiModalRegistry:
|
|
"""
|
|
A registry that dispatches data processing according to the model.
|
|
"""
|
|
|
|
DEFAULT_PLUGINS = (ImagePlugin(), AudioPlugin(), VideoPlugin())
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
plugins: Sequence[MultiModalPlugin] = DEFAULT_PLUGINS) -> None:
|
|
self._plugins = {p.get_data_key(): p for p in plugins}
|
|
|
|
self._processor_factories = ClassRegistry[nn.Module,
|
|
_ProcessorFactories]()
|
|
|
|
# This is used for non-multimodal models
|
|
self._disabled_limits_per_plugin = {k: 0 for k in self._plugins}
|
|
|
|
self._limits_by_model = _MultiModalLimits()
|
|
|
|
self._processing_cache = ProcessingCache(MM_CACHE_SIZE)
|
|
|
|
def register_plugin(self, plugin: MultiModalPlugin) -> None:
|
|
"""
|
|
Register a multi-modal plugin so it can be recognized by vLLM.
|
|
"""
|
|
data_type_key = plugin.get_data_key()
|
|
|
|
if data_type_key in self._plugins:
|
|
logger.warning(
|
|
"A plugin is already registered for data type %s, "
|
|
"and will be overwritten by the new plugin %s.", data_type_key,
|
|
plugin)
|
|
|
|
self._plugins[data_type_key] = plugin
|
|
|
|
def _get_plugin(self, data_type_key: str):
|
|
plugin = self._plugins.get(data_type_key)
|
|
if plugin is not None:
|
|
return plugin
|
|
|
|
msg = f"Unknown multi-modal data type: {data_type_key}"
|
|
raise NotImplementedError(msg)
|
|
|
|
def register_input_mapper(
|
|
self,
|
|
data_type_key: str,
|
|
mapper: Optional[MultiModalInputMapper] = None,
|
|
):
|
|
"""
|
|
Register an input mapper for a specific modality to a model class.
|
|
|
|
See :meth:`MultiModalPlugin.register_input_mapper` for more details.
|
|
"""
|
|
return self._get_plugin(data_type_key).register_input_mapper(mapper)
|
|
|
|
def register_image_input_mapper(
|
|
self,
|
|
mapper: Optional[MultiModalInputMapper] = None,
|
|
):
|
|
"""
|
|
Register an input mapper for image data to a model class.
|
|
|
|
See :meth:`MultiModalPlugin.register_input_mapper` for more details.
|
|
"""
|
|
return self.register_input_mapper("image", mapper)
|
|
|
|
def map_input(
|
|
self,
|
|
model_config: "ModelConfig",
|
|
data: MultiModalDataDict,
|
|
mm_processor_kwargs: Optional[Dict[str, Any]] = None,
|
|
) -> MultiModalKwargs:
|
|
"""
|
|
Apply an input mapper to the data passed to the model.
|
|
|
|
The data belonging to each modality is passed to the corresponding
|
|
plugin which in turn converts the data into into keyword arguments
|
|
via the input mapper registered for that model.
|
|
|
|
See :meth:`MultiModalPlugin.map_input` for more details.
|
|
|
|
Note:
|
|
This should be called after :meth:`init_mm_limits_per_prompt`.
|
|
"""
|
|
merged_dict: Dict[str, NestedTensors] = {}
|
|
|
|
for data_key, data_value in data.items():
|
|
plugin = self._get_plugin(data_key)
|
|
|
|
num_items = len(data_value) if isinstance(data_value, list) else 1
|
|
max_items = self._limits_by_model[model_config][data_key]
|
|
if num_items > max_items:
|
|
raise ValueError(
|
|
f"You set {data_key}={max_items} (or defaulted to 1) in "
|
|
f"`--limit-mm-per-prompt`, but found {num_items} items "
|
|
"in the same prompt.")
|
|
|
|
input_dict = plugin.map_input(model_config, data_value,
|
|
mm_processor_kwargs)
|
|
for input_key, input_tensor in input_dict.items():
|
|
if input_key in merged_dict:
|
|
raise ValueError(f"The input mappers (keys={set(data)}) "
|
|
f"resulted in a conflicting keyword "
|
|
f"argument to `forward()`: {input_key}")
|
|
|
|
merged_dict[input_key] = input_tensor
|
|
|
|
return MultiModalKwargs(merged_dict)
|
|
|
|
def create_input_mapper(self, model_config: "ModelConfig"):
|
|
"""
|
|
Create an input mapper (see :meth:`map_input`) for a specific model.
|
|
"""
|
|
# NOTE - we currently make the assumption that if a model has multiple
|
|
# supported modalities, they take the same kwargs. For the default,
|
|
# this could be an issue in the future if it falls back to two HF
|
|
# resources and we can't inspect the signature easily since it's
|
|
# getting initialized through the autoclass.
|
|
#
|
|
# If this is a problem in the future, we should revisit it, but since
|
|
# it potentially introduces a lot of complexity for a currently
|
|
# uncommon case, we do not for simplicity of both use & implementation
|
|
return functools.partial(self.map_input, model_config)
|
|
|
|
def register_max_multimodal_tokens(
|
|
self,
|
|
data_type_key: str,
|
|
max_mm_tokens: Optional[MultiModalTokensCalc] = None,
|
|
):
|
|
"""
|
|
Register the maximum number of tokens, corresponding to a single
|
|
instance of multimodal data belonging to a specific modality, that are
|
|
passed to the language model for a model class.
|
|
"""
|
|
return self._get_plugin(data_type_key) \
|
|
.register_max_multimodal_tokens(max_mm_tokens)
|
|
|
|
def register_max_image_tokens(
|
|
self,
|
|
max_mm_tokens: Optional[MultiModalTokensCalc] = None,
|
|
):
|
|
"""
|
|
Register the maximum number of image tokens, corresponding to a single
|
|
image, that are passed to the language model for a model class.
|
|
"""
|
|
return self.register_max_multimodal_tokens("image", max_mm_tokens)
|
|
|
|
def get_max_tokens_per_item_by_modality(
|
|
self,
|
|
model_config: "ModelConfig",
|
|
) -> Mapping[str, int]:
|
|
"""
|
|
Get the maximum number of tokens per data item from each modality based
|
|
on underlying model configuration.
|
|
"""
|
|
if self.has_processor(model_config):
|
|
tokenizer = cached_get_tokenizer(
|
|
model_config.tokenizer,
|
|
trust_remote_code=model_config.trust_remote_code,
|
|
)
|
|
processor = self.create_processor(model_config, tokenizer)
|
|
seq_len = model_config.max_model_len
|
|
return processor.info.get_mm_max_tokens_per_item(seq_len)
|
|
|
|
return {
|
|
key: plugin.get_max_multimodal_tokens(model_config)
|
|
for key, plugin in self._plugins.items()
|
|
}
|
|
|
|
def get_max_tokens_per_item_by_nonzero_modality(
|
|
self,
|
|
model_config: "ModelConfig",
|
|
) -> Mapping[str, int]:
|
|
"""
|
|
Get the maximum number of tokens per data item from each modality based
|
|
on underlying model configuration, excluding modalities that user
|
|
explicitly disabled via `limit_mm_per_prompt`.
|
|
|
|
Note:
|
|
This is currently directly used only in V1 for profiling the memory
|
|
usage of a model.
|
|
"""
|
|
mm_limits = self.get_mm_limits_per_prompt(model_config)
|
|
|
|
return {
|
|
key: max_tokens_per_mm_item
|
|
for key, max_tokens_per_mm_item in
|
|
self.get_max_tokens_per_item_by_modality(model_config).items()
|
|
if mm_limits[key] > 0
|
|
}
|
|
|
|
def get_max_tokens_by_modality(
|
|
self,
|
|
model_config: "ModelConfig",
|
|
) -> Mapping[str, int]:
|
|
"""
|
|
Get the maximum number of tokens from each modality
|
|
for profiling the memory usage of a model.
|
|
|
|
See :meth:`MultiModalPlugin.get_max_multimodal_tokens` for more details.
|
|
|
|
Note:
|
|
This should be called after :meth:`init_mm_limits_per_prompt`.
|
|
"""
|
|
mm_limits = self.get_mm_limits_per_prompt(model_config)
|
|
|
|
return {
|
|
key: mm_limits[key] * max_tokens_per_mm_item
|
|
for key, max_tokens_per_mm_item in
|
|
self.get_max_tokens_per_item_by_modality(model_config).items()
|
|
}
|
|
|
|
def get_max_multimodal_tokens(self, model_config: "ModelConfig") -> int:
|
|
"""
|
|
Get the maximum number of multi-modal tokens
|
|
for profiling the memory usage of a model.
|
|
|
|
See :meth:`MultiModalPlugin.get_max_multimodal_tokens` for more details.
|
|
|
|
Note:
|
|
This should be called after :meth:`init_mm_limits_per_prompt`.
|
|
"""
|
|
return sum(self.get_max_tokens_by_modality(model_config).values())
|
|
|
|
def init_mm_limits_per_prompt(
|
|
self,
|
|
model_config: "ModelConfig",
|
|
) -> None:
|
|
"""
|
|
Initialize the maximum number of multi-modal input instances for each
|
|
modality that are allowed per prompt for a model class.
|
|
"""
|
|
if model_config in self._limits_by_model:
|
|
logger.warning(
|
|
"`mm_limits` has already been set for model=%s, and will "
|
|
"be overwritten by the new values.", model_config.model)
|
|
|
|
multimodal_config = model_config.multimodal_config
|
|
if multimodal_config is None:
|
|
limits_per_plugin = self._disabled_limits_per_plugin
|
|
else:
|
|
config_limits_per_plugin = multimodal_config.limit_per_prompt
|
|
|
|
extra_keys = config_limits_per_plugin.keys() - self._plugins.keys()
|
|
if extra_keys:
|
|
logger.warning(
|
|
"Detected extra keys in `--limit-mm-per-prompt` which "
|
|
"are not registered as multi-modal plugins: %s. "
|
|
"They will be ignored.", extra_keys)
|
|
|
|
# NOTE: Currently the default is set to 1 for each plugin
|
|
# TODO: Automatically determine the limits based on budget
|
|
# once more models support multi-image inputs
|
|
limits_per_plugin = {
|
|
key: config_limits_per_plugin.get(key, 1)
|
|
for key in self._plugins
|
|
}
|
|
|
|
self._limits_by_model[model_config] = limits_per_plugin
|
|
|
|
def get_mm_limits_per_prompt(
|
|
self,
|
|
model_config: "ModelConfig",
|
|
) -> Mapping[str, int]:
|
|
"""
|
|
Get the maximum number of multi-modal input instances for each modality
|
|
that are allowed per prompt for a model class.
|
|
|
|
Note:
|
|
This should be called after :meth:`init_mm_limits_per_prompt`.
|
|
"""
|
|
if self.has_processor(model_config):
|
|
tokenizer = cached_get_tokenizer(
|
|
model_config.tokenizer,
|
|
trust_remote_code=model_config.trust_remote_code,
|
|
)
|
|
processor = self.create_processor(model_config, tokenizer)
|
|
profiler = MultiModalProfiler(processor)
|
|
return profiler.get_mm_limits()
|
|
|
|
return self._limits_by_model[model_config]
|
|
|
|
def register_processor(
|
|
self,
|
|
processor: MultiModalProcessorFactory[_I],
|
|
*,
|
|
info: ProcessingInfoFactory[_I],
|
|
dummy_inputs: DummyInputsBuilderFactory[_I],
|
|
):
|
|
"""
|
|
Register a multi-modal processor to a model class. The processor
|
|
is constructed lazily, hence a factory method should be passed.
|
|
|
|
When the model receives multi-modal data, the provided function is
|
|
invoked to transform the data into a dictionary of model inputs.
|
|
|
|
See also:
|
|
:ref:`mm-processing`
|
|
"""
|
|
|
|
def wrapper(model_cls: N) -> N:
|
|
if self._processor_factories.contains(model_cls, strict=True):
|
|
logger.warning(
|
|
"Model class %s already has a multi-modal processor "
|
|
"registered to %s. It is overwritten by the new one.",
|
|
model_cls, self)
|
|
|
|
self._processor_factories[model_cls] = _ProcessorFactories(
|
|
info=info,
|
|
dummy_inputs=dummy_inputs,
|
|
processor=processor,
|
|
)
|
|
|
|
return model_cls
|
|
|
|
return wrapper
|
|
|
|
def _get_model_cls(self, model_config: "ModelConfig"):
|
|
# Avoid circular import
|
|
from vllm.model_executor.model_loader import get_model_architecture
|
|
|
|
model_cls, _ = get_model_architecture(model_config)
|
|
return model_cls
|
|
|
|
def has_processor(self, model_config: "ModelConfig") -> bool:
|
|
"""
|
|
Test whether a multi-modal processor is defined for a specific model.
|
|
|
|
See also:
|
|
:ref:`mm-processing`
|
|
"""
|
|
return self._get_model_cls(model_config) in self._processor_factories
|
|
|
|
def create_processor(
|
|
self,
|
|
model_config: "ModelConfig",
|
|
tokenizer: AnyTokenizer,
|
|
) -> BaseMultiModalProcessor[BaseProcessingInfo]:
|
|
"""
|
|
Create a multi-modal processor for a specific model and tokenizer.
|
|
|
|
See also:
|
|
:ref:`mm-processing`
|
|
"""
|
|
model_cls = self._get_model_cls(model_config)
|
|
factories = self._processor_factories[model_cls]
|
|
|
|
ctx = InputProcessingContext(model_config, tokenizer)
|
|
cache = (None if model_config.disable_mm_preprocessor_cache else
|
|
self._processing_cache)
|
|
|
|
return factories.build_processor(ctx, cache=cache)
|