mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 10:46:08 +08:00
Signed-off-by: Sayandip Dutta <sayandip199309@gmail.com> Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
466 lines
16 KiB
Python
466 lines
16 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import base64
|
|
import mimetypes
|
|
import os
|
|
from tempfile import NamedTemporaryFile, TemporaryDirectory
|
|
from typing import TYPE_CHECKING, NamedTuple
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
from PIL import Image, ImageChops
|
|
|
|
from tests.utils import multi_gpu_test
|
|
from vllm.distributed import get_tensor_model_parallel_world_size
|
|
from vllm.distributed.parallel_state import (init_distributed_environment,
|
|
initialize_model_parallel)
|
|
from vllm.multimodal.image import convert_image_mode
|
|
from vllm.multimodal.inputs import PlaceholderRange
|
|
from vllm.multimodal.utils import (MediaConnector, argsort_mm_positions,
|
|
run_dp_sharded_vision_model)
|
|
from vllm.platforms import current_platform
|
|
from vllm.utils import get_open_port, update_environment_variables
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.multimodal.inputs import MultiModalPlaceholderDict
|
|
|
|
# Test different image extensions (JPG/PNG) and formats (gray/RGB/RGBA)
|
|
TEST_IMAGE_URLS = [
|
|
"https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
|
|
"https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png",
|
|
"https://upload.wikimedia.org/wikipedia/commons/thumb/9/91/Venn_diagram_rgb.svg/1280px-Venn_diagram_rgb.svg.png",
|
|
"https://upload.wikimedia.org/wikipedia/commons/0/0b/RGBA_comp.png",
|
|
]
|
|
|
|
TEST_VIDEO_URLS = [
|
|
"https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4",
|
|
"https://github.com/opencv/opencv/raw/refs/tags/4.12.0/samples/data/vtest.avi",
|
|
]
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def url_images() -> dict[str, Image.Image]:
|
|
connector = MediaConnector()
|
|
|
|
return {
|
|
image_url: connector.fetch_image(image_url)
|
|
for image_url in TEST_IMAGE_URLS
|
|
}
|
|
|
|
|
|
def get_supported_suffixes() -> tuple[str, ...]:
|
|
# We should at least test the file types mentioned in GPT-4 with Vision
|
|
OPENAI_SUPPORTED_SUFFIXES = ('.png', '.jpeg', '.jpg', '.webp', '.gif')
|
|
|
|
# Additional file types that are supported by us
|
|
EXTRA_SUPPORTED_SUFFIXES = ('.bmp', '.tiff')
|
|
|
|
return OPENAI_SUPPORTED_SUFFIXES + EXTRA_SUPPORTED_SUFFIXES
|
|
|
|
|
|
def _image_equals(a: Image.Image, b: Image.Image) -> bool:
|
|
return (np.asarray(a) == np.asarray(convert_image_mode(b, a.mode))).all()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
|
|
async def test_fetch_image_http(image_url: str):
|
|
connector = MediaConnector()
|
|
|
|
image_sync = connector.fetch_image(image_url)
|
|
image_async = await connector.fetch_image_async(image_url)
|
|
assert _image_equals(image_sync, image_async)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
|
|
@pytest.mark.parametrize("suffix", get_supported_suffixes())
|
|
async def test_fetch_image_base64(url_images: dict[str, Image.Image],
|
|
image_url: str, suffix: str):
|
|
connector = MediaConnector()
|
|
url_image = url_images[image_url]
|
|
|
|
try:
|
|
mime_type = Image.MIME[Image.registered_extensions()[suffix]]
|
|
except KeyError:
|
|
try:
|
|
mime_type = mimetypes.types_map[suffix]
|
|
except KeyError:
|
|
pytest.skip('No MIME type')
|
|
|
|
with NamedTemporaryFile(suffix=suffix) as f:
|
|
try:
|
|
url_image.save(f.name)
|
|
except Exception as e:
|
|
if e.args[0] == 'cannot write mode RGBA as JPEG':
|
|
pytest.skip('Conversion not supported')
|
|
|
|
raise
|
|
|
|
base64_image = base64.b64encode(f.read()).decode("utf-8")
|
|
data_url = f"data:{mime_type};base64,{base64_image}"
|
|
|
|
data_image_sync = connector.fetch_image(data_url)
|
|
if _image_equals(url_image, Image.open(f)):
|
|
assert _image_equals(url_image, data_image_sync)
|
|
else:
|
|
pass # Lossy format; only check that image can be opened
|
|
|
|
data_image_async = await connector.fetch_image_async(data_url)
|
|
assert _image_equals(data_image_sync, data_image_async)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
|
|
async def test_fetch_image_local_files(image_url: str):
|
|
connector = MediaConnector()
|
|
|
|
with TemporaryDirectory() as temp_dir:
|
|
local_connector = MediaConnector(allowed_local_media_path=temp_dir)
|
|
|
|
origin_image = connector.fetch_image(image_url)
|
|
origin_image.save(os.path.join(temp_dir, os.path.basename(image_url)),
|
|
quality=100,
|
|
icc_profile=origin_image.info.get('icc_profile'))
|
|
|
|
image_async = await local_connector.fetch_image_async(
|
|
f"file://{temp_dir}/{os.path.basename(image_url)}")
|
|
image_sync = local_connector.fetch_image(
|
|
f"file://{temp_dir}/{os.path.basename(image_url)}")
|
|
# Check that the images are equal
|
|
assert not ImageChops.difference(image_sync, image_async).getbbox()
|
|
|
|
with pytest.raises(ValueError, match="must be a subpath"):
|
|
await local_connector.fetch_image_async(
|
|
f"file://{temp_dir}/../{os.path.basename(image_url)}")
|
|
with pytest.raises(RuntimeError, match="Cannot load local files"):
|
|
await connector.fetch_image_async(
|
|
f"file://{temp_dir}/../{os.path.basename(image_url)}")
|
|
|
|
with pytest.raises(ValueError, match="must be a subpath"):
|
|
local_connector.fetch_image(
|
|
f"file://{temp_dir}/../{os.path.basename(image_url)}")
|
|
with pytest.raises(RuntimeError, match="Cannot load local files"):
|
|
connector.fetch_image(
|
|
f"file://{temp_dir}/../{os.path.basename(image_url)}")
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_fetch_image_local_files_with_space_in_name():
|
|
image_url = TEST_IMAGE_URLS[0]
|
|
connector = MediaConnector()
|
|
|
|
with TemporaryDirectory() as temp_dir:
|
|
local_connector = MediaConnector(allowed_local_media_path=temp_dir)
|
|
|
|
origin_image = connector.fetch_image(image_url)
|
|
filename = "file name with space.jpg"
|
|
origin_image.save(os.path.join(temp_dir, filename),
|
|
quality=100,
|
|
icc_profile=origin_image.info.get('icc_profile'))
|
|
|
|
try:
|
|
image_async = await local_connector.fetch_image_async(
|
|
f"file://{temp_dir}/{filename}")
|
|
image_sync = local_connector.fetch_image(
|
|
f"file://{temp_dir}/{filename}")
|
|
except FileNotFoundError as e:
|
|
pytest.fail(
|
|
"Failed to fetch image with space in name: {}".format(e))
|
|
# Check that the images are equal
|
|
assert not ImageChops.difference(image_sync, image_async).getbbox()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_fetch_image_error_conversion():
|
|
connector = MediaConnector()
|
|
broken_img = ""
|
|
|
|
# PIL.UnidentifiedImageError should be converted to ValueError
|
|
with pytest.raises(ValueError):
|
|
await connector.fetch_image_async(broken_img)
|
|
|
|
with pytest.raises(ValueError):
|
|
connector.fetch_image(broken_img)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
|
|
@pytest.mark.parametrize("num_frames", [-1, 32, 1800])
|
|
async def test_fetch_video_http(video_url: str, num_frames: int):
|
|
connector = MediaConnector(
|
|
media_io_kwargs={"video": {
|
|
"num_frames": num_frames,
|
|
}})
|
|
|
|
video_sync, metadata_sync = connector.fetch_video(video_url)
|
|
video_async, metadata_async = await connector.fetch_video_async(video_url)
|
|
assert np.array_equal(video_sync, video_async)
|
|
assert metadata_sync == metadata_async
|
|
|
|
|
|
# Used for `test_argsort_mm_positions`.
|
|
class TestCase(NamedTuple):
|
|
mm_positions: "MultiModalPlaceholderDict"
|
|
expected_modality_idxs: list[tuple[str, int]]
|
|
|
|
|
|
def test_argsort_mm_positions():
|
|
|
|
test_cases = [
|
|
# Single modality
|
|
## Internally sorted
|
|
TestCase(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=0, length=2),
|
|
PlaceholderRange(offset=3, length=2),
|
|
]
|
|
},
|
|
expected_modality_idxs=[
|
|
("image", 0),
|
|
("image", 1),
|
|
],
|
|
),
|
|
## Internally unsorted
|
|
TestCase(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=3, length=2),
|
|
PlaceholderRange(offset=0, length=2),
|
|
]
|
|
},
|
|
expected_modality_idxs=[
|
|
("image", 1),
|
|
("image", 0),
|
|
],
|
|
),
|
|
|
|
# Two modalities
|
|
## Internally sorted
|
|
TestCase(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=7, length=4),
|
|
PlaceholderRange(offset=11, length=5),
|
|
],
|
|
"audio": [
|
|
PlaceholderRange(offset=0, length=2),
|
|
PlaceholderRange(offset=2, length=3),
|
|
]
|
|
},
|
|
expected_modality_idxs=[
|
|
("audio", 0),
|
|
("audio", 1),
|
|
("image", 0),
|
|
("image", 1),
|
|
],
|
|
),
|
|
## Interleaved, internally sorted
|
|
TestCase(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=0, length=4),
|
|
PlaceholderRange(offset=8, length=2),
|
|
],
|
|
"audio": [
|
|
PlaceholderRange(offset=5, length=2),
|
|
PlaceholderRange(offset=11, length=4),
|
|
]
|
|
},
|
|
expected_modality_idxs=[
|
|
("image", 0),
|
|
("audio", 0),
|
|
("image", 1),
|
|
("audio", 1),
|
|
],
|
|
),
|
|
## Interleaved, internally unsorted
|
|
TestCase(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=8, length=2),
|
|
PlaceholderRange(offset=0, length=4),
|
|
],
|
|
"audio": [
|
|
PlaceholderRange(offset=11, length=4),
|
|
PlaceholderRange(offset=5, length=2),
|
|
]
|
|
},
|
|
expected_modality_idxs=[
|
|
("image", 1),
|
|
("audio", 1),
|
|
("image", 0),
|
|
("audio", 0),
|
|
],
|
|
),
|
|
|
|
# Three modalities
|
|
## Internally sorted
|
|
TestCase(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=15, length=7),
|
|
PlaceholderRange(offset=22, length=8),
|
|
],
|
|
"audio": [
|
|
PlaceholderRange(offset=0, length=2),
|
|
],
|
|
"video": [
|
|
PlaceholderRange(offset=3, length=4),
|
|
PlaceholderRange(offset=7, length=5),
|
|
PlaceholderRange(offset=12, length=6),
|
|
]
|
|
},
|
|
expected_modality_idxs=[
|
|
("audio", 0),
|
|
("video", 0),
|
|
("video", 1),
|
|
("video", 2),
|
|
("image", 0),
|
|
("image", 1),
|
|
],
|
|
),
|
|
## Interleaved, internally sorted
|
|
TestCase(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=0, length=2),
|
|
PlaceholderRange(offset=2, length=3),
|
|
PlaceholderRange(offset=20, length=4),
|
|
],
|
|
"audio": [
|
|
PlaceholderRange(offset=5, length=2),
|
|
],
|
|
"video": [
|
|
PlaceholderRange(offset=8, length=5),
|
|
]
|
|
},
|
|
expected_modality_idxs=[
|
|
("image", 0),
|
|
("image", 1),
|
|
("audio", 0),
|
|
("video", 0),
|
|
("image", 2),
|
|
],
|
|
),
|
|
## Interleaved, internally sunorted
|
|
TestCase(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=0, length=2),
|
|
PlaceholderRange(offset=20, length=4),
|
|
PlaceholderRange(offset=2, length=3),
|
|
],
|
|
"audio": [
|
|
PlaceholderRange(offset=5, length=2),
|
|
],
|
|
"video": [
|
|
PlaceholderRange(offset=8, length=5),
|
|
]
|
|
},
|
|
expected_modality_idxs=[
|
|
("image", 0),
|
|
("image", 2),
|
|
("audio", 0),
|
|
("video", 0),
|
|
("image", 1),
|
|
],
|
|
),
|
|
]
|
|
|
|
for mm_positions, expected_modality_idxs in test_cases:
|
|
modality_idxs = argsort_mm_positions(mm_positions)
|
|
|
|
assert modality_idxs == expected_modality_idxs
|
|
|
|
|
|
class SimpleLinearModel(torch.nn.Module):
|
|
"""A simple linear vision model for testing."""
|
|
|
|
def __init__(self, input_dim: int = 3 * 224 * 224, output_dim: int = 32):
|
|
super().__init__()
|
|
self.flatten = torch.nn.Flatten()
|
|
self.linear = torch.nn.Linear(input_dim, output_dim)
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
# Flatten the input and apply linear transformation
|
|
x = self.flatten(x)
|
|
return self.linear(x)
|
|
|
|
|
|
@multi_gpu_test(num_gpus=2)
|
|
@pytest.mark.parametrize(
|
|
"batch_size",
|
|
[
|
|
1, # Single image
|
|
4, # Small batch
|
|
5, # Odd batch size (for testing padding)
|
|
],
|
|
)
|
|
def test_run_dp_sharded_vision_model(batch_size: int):
|
|
world_size = 2
|
|
# Launch processes
|
|
mp.spawn(
|
|
run_dp_sharded_vision_model_vs_direct,
|
|
args=(
|
|
world_size,
|
|
batch_size,
|
|
get_open_port(),
|
|
),
|
|
nprocs=world_size,
|
|
)
|
|
|
|
|
|
def run_dp_sharded_vision_model_vs_direct(local_rank: int, world_size: int,
|
|
batch_size: int, master_port: int):
|
|
"""
|
|
Test that run_dp_sharded_vision_model produces the same results as
|
|
calling the model directly.
|
|
"""
|
|
|
|
# Set random seed for reproducibility
|
|
current_platform.seed_everything(0)
|
|
|
|
device = torch.device(f"cuda:{local_rank}")
|
|
torch.cuda.set_device(device)
|
|
torch.set_default_device(device)
|
|
|
|
update_environment_variables({
|
|
'RANK': str(local_rank),
|
|
'LOCAL_RANK': str(local_rank),
|
|
'WORLD_SIZE': str(world_size),
|
|
'MASTER_ADDR': 'localhost',
|
|
'MASTER_PORT': str(master_port),
|
|
})
|
|
|
|
# initialize distributed
|
|
init_distributed_environment()
|
|
initialize_model_parallel(tensor_model_parallel_size=world_size)
|
|
|
|
# Create a test input tensor
|
|
image_input = torch.randn(batch_size, 3, 224, 224)
|
|
|
|
# Create a simple linear model
|
|
vision_model = SimpleLinearModel()
|
|
|
|
# Run the model directly on the full input
|
|
with torch.inference_mode():
|
|
direct_output = vision_model(image_input)
|
|
|
|
# Run the model through the sharded function
|
|
with torch.inference_mode():
|
|
sharded_output = run_dp_sharded_vision_model(image_input, vision_model)
|
|
|
|
# Check that the world size is setup correctly
|
|
assert get_tensor_model_parallel_world_size() == world_size
|
|
|
|
# Check that the outputs have the same shape
|
|
assert direct_output.shape == sharded_output.shape
|
|
|
|
# Check that the outputs are close (they should be identical)
|
|
assert torch.allclose(direct_output, sharded_output, rtol=1e-5, atol=1e-5)
|