mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-19 09:54:30 +08:00
Signed-off-by: WorldExplored <srreyansh.sethi@gmail.com> Signed-off-by: Srreyansh Sethi <107075589+WorldExplored@users.noreply.github.com> Signed-off-by: vnadathur <glvikramn@gmail.com> Signed-off-by: wang.yuqi <yuqi.wang@daocloud.io> Co-authored-by: vnadathur <236933696+vnadathur@users.noreply.github.com> Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com> Co-authored-by: vnadathur <glvikramn@gmail.com> Co-authored-by: wang.yuqi <noooop@126.com> Co-authored-by: wang.yuqi <yuqi.wang@daocloud.io>
236 lines
8.0 KiB
Python
236 lines
8.0 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
from http import HTTPStatus
|
|
from typing import cast
|
|
|
|
import jinja2
|
|
import numpy as np
|
|
from fastapi import Request
|
|
|
|
from vllm.engine.protocol import EngineClient
|
|
from vllm.entrypoints.chat_utils import ChatTemplateContentFormatOption
|
|
from vllm.entrypoints.logger import RequestLogger
|
|
from vllm.entrypoints.openai.protocol import (
|
|
ChatCompletionRequest,
|
|
ClassificationChatRequest,
|
|
ClassificationCompletionRequest,
|
|
ClassificationData,
|
|
ClassificationRequest,
|
|
ClassificationResponse,
|
|
ErrorResponse,
|
|
UsageInfo,
|
|
)
|
|
from vllm.entrypoints.openai.serving_engine import (
|
|
ClassificationServeContext,
|
|
OpenAIServing,
|
|
ServeContext,
|
|
)
|
|
from vllm.entrypoints.openai.serving_models import OpenAIServingModels
|
|
from vllm.entrypoints.renderer import RenderConfig
|
|
from vllm.logger import init_logger
|
|
from vllm.outputs import ClassificationOutput, PoolingRequestOutput
|
|
from vllm.pooling_params import PoolingParams
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class ClassificationMixin(OpenAIServing):
|
|
chat_template: str | None
|
|
chat_template_content_format: ChatTemplateContentFormatOption
|
|
trust_request_chat_template: bool
|
|
|
|
async def _preprocess(
|
|
self,
|
|
ctx: ServeContext,
|
|
) -> ErrorResponse | None:
|
|
"""
|
|
Process classification inputs: tokenize text, resolve adapters,
|
|
and prepare model-specific inputs.
|
|
"""
|
|
ctx = cast(ClassificationServeContext, ctx)
|
|
try:
|
|
ctx.tokenizer = await self.engine_client.get_tokenizer()
|
|
|
|
request_obj = ctx.request
|
|
|
|
if isinstance(request_obj, ClassificationChatRequest):
|
|
chat_request = request_obj
|
|
messages = chat_request.messages
|
|
trust_request_chat_template = getattr(
|
|
self,
|
|
"trust_request_chat_template",
|
|
False,
|
|
)
|
|
ret = self._validate_chat_template(
|
|
request_chat_template=chat_request.chat_template,
|
|
chat_template_kwargs=chat_request.chat_template_kwargs,
|
|
trust_request_chat_template=trust_request_chat_template,
|
|
)
|
|
if ret:
|
|
return ret
|
|
|
|
(
|
|
_,
|
|
_,
|
|
engine_prompts,
|
|
) = await self._preprocess_chat(
|
|
cast(ChatCompletionRequest, chat_request),
|
|
ctx.tokenizer,
|
|
messages,
|
|
chat_template=(
|
|
chat_request.chat_template
|
|
or getattr(self, "chat_template", None)
|
|
),
|
|
chat_template_content_format=cast(
|
|
ChatTemplateContentFormatOption,
|
|
getattr(self, "chat_template_content_format", "auto"),
|
|
),
|
|
add_generation_prompt=False,
|
|
continue_final_message=False,
|
|
add_special_tokens=chat_request.add_special_tokens,
|
|
)
|
|
ctx.engine_prompts = engine_prompts
|
|
|
|
elif isinstance(request_obj, ClassificationCompletionRequest):
|
|
completion_request = request_obj
|
|
input_data = completion_request.input
|
|
if input_data in (None, ""):
|
|
return self.create_error_response(
|
|
"Input or messages must be provided",
|
|
status_code=HTTPStatus.BAD_REQUEST,
|
|
)
|
|
if isinstance(input_data, list) and not input_data:
|
|
ctx.engine_prompts = []
|
|
return None
|
|
|
|
renderer = self._get_renderer(ctx.tokenizer)
|
|
prompt_input = cast(str | list[str], input_data)
|
|
ctx.engine_prompts = await renderer.render_prompt(
|
|
prompt_or_prompts=prompt_input,
|
|
config=self._build_render_config(completion_request),
|
|
)
|
|
else:
|
|
return self.create_error_response(
|
|
"Invalid classification request type",
|
|
status_code=HTTPStatus.BAD_REQUEST,
|
|
)
|
|
|
|
return None
|
|
|
|
except (ValueError, TypeError, jinja2.TemplateError) as e:
|
|
logger.exception("Error in preprocessing prompt inputs")
|
|
return self.create_error_response(str(e))
|
|
|
|
def _build_response(
|
|
self,
|
|
ctx: ServeContext,
|
|
) -> ClassificationResponse | ErrorResponse:
|
|
"""
|
|
Convert model outputs to a formatted classification response
|
|
with probabilities and labels.
|
|
"""
|
|
ctx = cast(ClassificationServeContext, ctx)
|
|
items: list[ClassificationData] = []
|
|
num_prompt_tokens = 0
|
|
|
|
final_res_batch_checked = cast(list[PoolingRequestOutput], ctx.final_res_batch)
|
|
|
|
for idx, final_res in enumerate(final_res_batch_checked):
|
|
classify_res = ClassificationOutput.from_base(final_res.outputs)
|
|
|
|
probs = classify_res.probs
|
|
predicted_index = int(np.argmax(probs))
|
|
label = getattr(self.model_config.hf_config, "id2label", {}).get(
|
|
predicted_index
|
|
)
|
|
|
|
item = ClassificationData(
|
|
index=idx,
|
|
label=label,
|
|
probs=probs,
|
|
num_classes=len(probs),
|
|
)
|
|
|
|
items.append(item)
|
|
prompt_token_ids = final_res.prompt_token_ids
|
|
num_prompt_tokens += len(prompt_token_ids)
|
|
|
|
usage = UsageInfo(
|
|
prompt_tokens=num_prompt_tokens,
|
|
total_tokens=num_prompt_tokens,
|
|
)
|
|
|
|
return ClassificationResponse(
|
|
id=ctx.request_id,
|
|
created=ctx.created_time,
|
|
model=ctx.model_name,
|
|
data=items,
|
|
usage=usage,
|
|
)
|
|
|
|
def _build_render_config(self, request: ClassificationRequest) -> RenderConfig:
|
|
return RenderConfig(
|
|
max_length=self.max_model_len,
|
|
truncate_prompt_tokens=request.truncate_prompt_tokens,
|
|
add_special_tokens=request.add_special_tokens,
|
|
)
|
|
|
|
|
|
class ServingClassification(ClassificationMixin):
|
|
request_id_prefix = "classify"
|
|
|
|
def __init__(
|
|
self,
|
|
engine_client: EngineClient,
|
|
models: OpenAIServingModels,
|
|
*,
|
|
request_logger: RequestLogger | None,
|
|
chat_template: str | None = None,
|
|
chat_template_content_format: ChatTemplateContentFormatOption = "auto",
|
|
trust_request_chat_template: bool = False,
|
|
log_error_stack: bool = False,
|
|
) -> None:
|
|
super().__init__(
|
|
engine_client=engine_client,
|
|
models=models,
|
|
request_logger=request_logger,
|
|
log_error_stack=log_error_stack,
|
|
)
|
|
|
|
self.chat_template = chat_template
|
|
self.chat_template_content_format = chat_template_content_format
|
|
self.trust_request_chat_template = trust_request_chat_template
|
|
|
|
async def create_classify(
|
|
self,
|
|
request: ClassificationRequest,
|
|
raw_request: Request,
|
|
) -> ClassificationResponse | ErrorResponse:
|
|
model_name = self.models.model_name()
|
|
request_id = f"{self.request_id_prefix}-{self._base_request_id(raw_request)}"
|
|
|
|
ctx = ClassificationServeContext(
|
|
request=request,
|
|
raw_request=raw_request,
|
|
model_name=model_name,
|
|
request_id=request_id,
|
|
)
|
|
|
|
return await super().handle(ctx) # type: ignore
|
|
|
|
def _create_pooling_params(
|
|
self,
|
|
ctx: ClassificationServeContext,
|
|
) -> PoolingParams | ErrorResponse:
|
|
pooling_params = super()._create_pooling_params(ctx)
|
|
if isinstance(pooling_params, ErrorResponse):
|
|
return pooling_params
|
|
|
|
try:
|
|
pooling_params.verify("classify", self.model_config)
|
|
except ValueError as e:
|
|
return self.create_error_response(str(e))
|
|
|
|
return pooling_params
|