mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-13 17:45:58 +08:00
Co-authored-by: Jasmond Loh <Jasmond.Loh@hotmail.com> Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
326 lines
13 KiB
Python
326 lines
13 KiB
Python
# coding=utf-8
|
|
# Adapted from
|
|
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/bloom/modeling_bloom.py
|
|
# Copyright 2023 The CacheFlow team.
|
|
# Copyright 2022 HuggingFace Inc. team and BigScience workshop.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only BLOOM model compatible with HuggingFace weights.
|
|
|
|
The input of the model is flattened to a 1D tensor of tokens. The model uses
|
|
InputMetadata to extract the original 2D shape of the input.
|
|
"""
|
|
import math
|
|
from typing import List, Optional, Tuple
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import BloomConfig
|
|
|
|
from vllm.model_executor.input_metadata import InputMetadata
|
|
from vllm.model_executor.layers.activation import get_act_fn
|
|
from vllm.model_executor.layers.attention import PagedAttentionWithALiBi
|
|
from vllm.model_executor.layers.sampler import Sampler
|
|
from vllm.model_executor.weight_utils import (hf_model_weights_iterator,
|
|
load_tensor_parallel_weights)
|
|
from vllm.model_executor.parallel_utils.parallel_state import (
|
|
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
|
|
from vllm.model_executor.parallel_utils.tensor_parallel import (
|
|
VocabParallelEmbedding, ColumnParallelLinear, RowParallelLinear)
|
|
from vllm.sequence import SamplerOutput
|
|
|
|
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
|
|
|
|
|
def _get_alibi_slopes(total_num_heads: int) -> torch.Tensor:
|
|
closest_power_of_2 = 2**math.floor(math.log2(total_num_heads))
|
|
base = torch.tensor(
|
|
2**(-(2**-(math.log2(closest_power_of_2) - 3))),
|
|
dtype=torch.float32,
|
|
)
|
|
powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32)
|
|
slopes = torch.pow(base, powers)
|
|
|
|
if closest_power_of_2 != total_num_heads:
|
|
extra_base = torch.tensor(
|
|
2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))),
|
|
dtype=torch.float32,
|
|
)
|
|
num_remaining_heads = min(closest_power_of_2,
|
|
total_num_heads - closest_power_of_2)
|
|
extra_powers = torch.arange(start=1,
|
|
end=1 + 2 * num_remaining_heads,
|
|
step=2,
|
|
dtype=torch.int32)
|
|
slopes = torch.cat(
|
|
[slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
|
return slopes
|
|
|
|
|
|
class BloomAttention(nn.Module):
|
|
|
|
def __init__(self, config: BloomConfig):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
self.total_num_heads = config.n_head
|
|
self.head_dim = self.hidden_size // self.total_num_heads
|
|
assert self.head_dim * self.total_num_heads == self.hidden_size
|
|
|
|
tp_world_size = get_tensor_model_parallel_world_size()
|
|
assert self.total_num_heads % tp_world_size == 0
|
|
self.num_heads = self.total_num_heads // tp_world_size
|
|
|
|
self.query_key_value = ColumnParallelLinear(
|
|
self.hidden_size,
|
|
3 * self.hidden_size,
|
|
bias=True,
|
|
gather_output=False,
|
|
perform_initialization=False,
|
|
)
|
|
self.dense = RowParallelLinear(
|
|
self.hidden_size,
|
|
self.hidden_size,
|
|
bias=True,
|
|
input_is_parallel=True,
|
|
perform_initialization=False,
|
|
)
|
|
|
|
# Create the alibi slopes and slice them.
|
|
tp_rank = get_tensor_model_parallel_rank()
|
|
head_start = tp_rank * self.num_heads
|
|
head_end = (tp_rank + 1) * self.num_heads
|
|
alibi_slopes = _get_alibi_slopes(self.total_num_heads)
|
|
alibi_slopes = alibi_slopes[head_start:head_end].tolist()
|
|
|
|
scaling = self.head_dim**-0.5
|
|
self.attn = PagedAttentionWithALiBi(self.num_heads, self.head_dim,
|
|
scaling, alibi_slopes)
|
|
|
|
def forward(
|
|
self,
|
|
position_ids: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: KVCache,
|
|
input_metadata: InputMetadata,
|
|
cache_event: Optional[torch.cuda.Event],
|
|
) -> torch.Tensor:
|
|
del position_ids # Unused.
|
|
qkv, _ = self.query_key_value(hidden_states)
|
|
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
|
k_cache, v_cache = kv_cache
|
|
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata,
|
|
cache_event)
|
|
output, _ = self.dense(attn_output)
|
|
return output
|
|
|
|
|
|
class BloomMLP(nn.Module):
|
|
|
|
def __init__(self, config: BloomConfig):
|
|
super().__init__()
|
|
hidden_size = config.hidden_size
|
|
self.dense_h_to_4h = ColumnParallelLinear(hidden_size,
|
|
4 * hidden_size,
|
|
gather_output=False,
|
|
perform_initialization=False)
|
|
self.act = get_act_fn("gelu")
|
|
self.dense_4h_to_h = RowParallelLinear(4 * hidden_size,
|
|
hidden_size,
|
|
input_is_parallel=True,
|
|
perform_initialization=False)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x, _ = self.dense_h_to_4h(x)
|
|
x = self.act(x)
|
|
x, _ = self.dense_4h_to_h(x)
|
|
return x
|
|
|
|
|
|
class BloomBlock(nn.Module):
|
|
|
|
def __init__(self, config: BloomConfig):
|
|
super().__init__()
|
|
hidden_size = config.hidden_size
|
|
|
|
self.input_layernorm = nn.LayerNorm(hidden_size,
|
|
eps=config.layer_norm_epsilon)
|
|
self.self_attention = BloomAttention(config)
|
|
self.post_attention_layernorm = nn.LayerNorm(
|
|
hidden_size, eps=config.layer_norm_epsilon)
|
|
self.mlp = BloomMLP(config)
|
|
self.apply_residual_connection_post_layernorm = (
|
|
config.apply_residual_connection_post_layernorm)
|
|
|
|
def forward(
|
|
self,
|
|
position_ids: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: KVCache,
|
|
input_metadata: InputMetadata,
|
|
cache_event: Optional[torch.cuda.Event],
|
|
) -> torch.Tensor:
|
|
# Layer norm at the beginning of the transformer layer.
|
|
layernorm_output = self.input_layernorm(hidden_states)
|
|
|
|
# Layer norm post the self attention.
|
|
if self.apply_residual_connection_post_layernorm:
|
|
residual = layernorm_output
|
|
else:
|
|
residual = hidden_states
|
|
|
|
# Self attention.
|
|
attention_output = self.self_attention(
|
|
position_ids=position_ids,
|
|
hidden_states=layernorm_output,
|
|
kv_cache=kv_cache,
|
|
input_metadata=input_metadata,
|
|
cache_event=cache_event,
|
|
)
|
|
attention_output = attention_output + residual
|
|
layernorm_output = self.post_attention_layernorm(attention_output)
|
|
|
|
# Get residual
|
|
if self.apply_residual_connection_post_layernorm:
|
|
residual = layernorm_output
|
|
else:
|
|
residual = attention_output
|
|
|
|
# MLP.
|
|
output = self.mlp(layernorm_output) + residual
|
|
return output
|
|
|
|
|
|
class BloomModel(nn.Module):
|
|
|
|
def __init__(self, config: BloomConfig):
|
|
super().__init__()
|
|
self.embed_dim = config.hidden_size
|
|
|
|
# Embedding + LN Embedding
|
|
self.word_embeddings = VocabParallelEmbedding(
|
|
config.vocab_size, self.embed_dim, perform_initialization=False)
|
|
self.word_embeddings_layernorm = nn.LayerNorm(
|
|
self.embed_dim, eps=config.layer_norm_epsilon)
|
|
|
|
# Transformer blocks
|
|
self.h = nn.ModuleList(
|
|
[BloomBlock(config) for _ in range(config.num_hidden_layers)])
|
|
|
|
# Final Layer Norm
|
|
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
position_ids: torch.Tensor,
|
|
kv_caches: List[KVCache],
|
|
input_metadata: InputMetadata,
|
|
cache_events: Optional[List[torch.cuda.Event]],
|
|
) -> torch.Tensor:
|
|
hidden_states = self.word_embeddings(input_ids)
|
|
hidden_states = self.word_embeddings_layernorm(hidden_states)
|
|
for i in range(len(self.h)):
|
|
if cache_events is None:
|
|
cache_event = None
|
|
else:
|
|
cache_event = cache_events[i]
|
|
layer = self.h[i]
|
|
hidden_states = layer(
|
|
position_ids,
|
|
hidden_states,
|
|
kv_caches[i],
|
|
input_metadata,
|
|
cache_event,
|
|
)
|
|
hidden_states = self.ln_f(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class BloomForCausalLM(nn.Module):
|
|
|
|
def __init__(self, config: BloomConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.transformer = BloomModel(config)
|
|
# TODO(zhuohan): create a new weight after implementing pipeline
|
|
# parallelism
|
|
self.lm_head_weight = self.transformer.word_embeddings.weight
|
|
self.sampler = Sampler(config.vocab_size)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[KVCache],
|
|
input_metadata: InputMetadata,
|
|
cache_events: Optional[List[torch.cuda.Event]],
|
|
) -> SamplerOutput:
|
|
hidden_states = self.transformer(input_ids, positions, kv_caches,
|
|
input_metadata, cache_events)
|
|
next_tokens = self.sampler(self.lm_head_weight, hidden_states,
|
|
input_metadata)
|
|
return next_tokens
|
|
|
|
_column_parallel_weights = [
|
|
"word_embeddings.weight", "dense_h_to_4h.weight", "dense_h_to_4h.bias"
|
|
]
|
|
_row_parallel_weights = ["dense.weight", "dense_4h_to_h.weight"]
|
|
|
|
def load_weights(self,
|
|
model_name_or_path: str,
|
|
cache_dir: Optional[str] = None,
|
|
load_format: str = "auto",
|
|
revision: Optional[str] = None):
|
|
tp_rank = get_tensor_model_parallel_rank()
|
|
state_dict = self.state_dict()
|
|
for name, loaded_weight in hf_model_weights_iterator(
|
|
model_name_or_path, cache_dir, load_format, revision):
|
|
if name == "lm_head.weight":
|
|
# Since hidden_states are parallelized, we need to
|
|
# load lm_head.weight in parallel.
|
|
self._column_parallel_weights.append(name)
|
|
# If lm_head is provided, use it instead.
|
|
param = self.lm_head_weight
|
|
else:
|
|
if not name.startswith("transformer."):
|
|
name = "transformer." + name
|
|
param = state_dict[name]
|
|
|
|
if "query_key_value" in name:
|
|
# NOTE(woosuk): BLOOM's fused QKV has the shape of
|
|
# [num_heads * 3 * head_size, hidden_size], while the
|
|
# required shape is [3 * num_heads * head_size, hidden_size].
|
|
# Thus, we need weight conversion.
|
|
shard_size = param.shape[0]
|
|
start = shard_size * tp_rank
|
|
end = shard_size * (tp_rank + 1)
|
|
loaded_weight = loaded_weight[start:end]
|
|
|
|
num_heads = self.config.num_attention_heads
|
|
hidden_size = self.config.hidden_size
|
|
head_size = hidden_size // num_heads
|
|
if "query_key_value.weight" in name:
|
|
loaded_weight = loaded_weight.view(-1, 3, head_size,
|
|
hidden_size)
|
|
loaded_weight = loaded_weight.transpose(0, 1)
|
|
loaded_weight = loaded_weight.reshape(-1, hidden_size)
|
|
elif "query_key_value.bias" in name:
|
|
loaded_weight = loaded_weight.view(-1, 3, head_size)
|
|
loaded_weight = loaded_weight.transpose(0, 1)
|
|
loaded_weight = loaded_weight.reshape(-1)
|
|
else:
|
|
raise ValueError(f"Unexpected weight name: {name}")
|
|
load_tensor_parallel_weights(param, loaded_weight, name,
|
|
self._column_parallel_weights,
|
|
self._row_parallel_weights, tp_rank)
|