Jasmond L ab019eea75
Add Model Revision Support (#1014)
Co-authored-by: Jasmond Loh <Jasmond.Loh@hotmail.com>
Co-authored-by: Zhuohan Li <zhuohan123@gmail.com>
2023-09-13 15:20:02 -07:00

326 lines
13 KiB
Python

# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/bloom/modeling_bloom.py
# Copyright 2023 The CacheFlow team.
# Copyright 2022 HuggingFace Inc. team and BigScience workshop.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only BLOOM model compatible with HuggingFace weights.
The input of the model is flattened to a 1D tensor of tokens. The model uses
InputMetadata to extract the original 2D shape of the input.
"""
import math
from typing import List, Optional, Tuple
import torch
from torch import nn
from transformers import BloomConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.attention import PagedAttentionWithALiBi
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.weight_utils import (hf_model_weights_iterator,
load_tensor_parallel_weights)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.parallel_utils.tensor_parallel import (
VocabParallelEmbedding, ColumnParallelLinear, RowParallelLinear)
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
def _get_alibi_slopes(total_num_heads: int) -> torch.Tensor:
closest_power_of_2 = 2**math.floor(math.log2(total_num_heads))
base = torch.tensor(
2**(-(2**-(math.log2(closest_power_of_2) - 3))),
dtype=torch.float32,
)
powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32)
slopes = torch.pow(base, powers)
if closest_power_of_2 != total_num_heads:
extra_base = torch.tensor(
2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))),
dtype=torch.float32,
)
num_remaining_heads = min(closest_power_of_2,
total_num_heads - closest_power_of_2)
extra_powers = torch.arange(start=1,
end=1 + 2 * num_remaining_heads,
step=2,
dtype=torch.int32)
slopes = torch.cat(
[slopes, torch.pow(extra_base, extra_powers)], dim=0)
return slopes
class BloomAttention(nn.Module):
def __init__(self, config: BloomConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.total_num_heads = config.n_head
self.head_dim = self.hidden_size // self.total_num_heads
assert self.head_dim * self.total_num_heads == self.hidden_size
tp_world_size = get_tensor_model_parallel_world_size()
assert self.total_num_heads % tp_world_size == 0
self.num_heads = self.total_num_heads // tp_world_size
self.query_key_value = ColumnParallelLinear(
self.hidden_size,
3 * self.hidden_size,
bias=True,
gather_output=False,
perform_initialization=False,
)
self.dense = RowParallelLinear(
self.hidden_size,
self.hidden_size,
bias=True,
input_is_parallel=True,
perform_initialization=False,
)
# Create the alibi slopes and slice them.
tp_rank = get_tensor_model_parallel_rank()
head_start = tp_rank * self.num_heads
head_end = (tp_rank + 1) * self.num_heads
alibi_slopes = _get_alibi_slopes(self.total_num_heads)
alibi_slopes = alibi_slopes[head_start:head_end].tolist()
scaling = self.head_dim**-0.5
self.attn = PagedAttentionWithALiBi(self.num_heads, self.head_dim,
scaling, alibi_slopes)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
del position_ids # Unused.
qkv, _ = self.query_key_value(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata,
cache_event)
output, _ = self.dense(attn_output)
return output
class BloomMLP(nn.Module):
def __init__(self, config: BloomConfig):
super().__init__()
hidden_size = config.hidden_size
self.dense_h_to_4h = ColumnParallelLinear(hidden_size,
4 * hidden_size,
gather_output=False,
perform_initialization=False)
self.act = get_act_fn("gelu")
self.dense_4h_to_h = RowParallelLinear(4 * hidden_size,
hidden_size,
input_is_parallel=True,
perform_initialization=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x, _ = self.dense_h_to_4h(x)
x = self.act(x)
x, _ = self.dense_4h_to_h(x)
return x
class BloomBlock(nn.Module):
def __init__(self, config: BloomConfig):
super().__init__()
hidden_size = config.hidden_size
self.input_layernorm = nn.LayerNorm(hidden_size,
eps=config.layer_norm_epsilon)
self.self_attention = BloomAttention(config)
self.post_attention_layernorm = nn.LayerNorm(
hidden_size, eps=config.layer_norm_epsilon)
self.mlp = BloomMLP(config)
self.apply_residual_connection_post_layernorm = (
config.apply_residual_connection_post_layernorm)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
# Layer norm at the beginning of the transformer layer.
layernorm_output = self.input_layernorm(hidden_states)
# Layer norm post the self attention.
if self.apply_residual_connection_post_layernorm:
residual = layernorm_output
else:
residual = hidden_states
# Self attention.
attention_output = self.self_attention(
position_ids=position_ids,
hidden_states=layernorm_output,
kv_cache=kv_cache,
input_metadata=input_metadata,
cache_event=cache_event,
)
attention_output = attention_output + residual
layernorm_output = self.post_attention_layernorm(attention_output)
# Get residual
if self.apply_residual_connection_post_layernorm:
residual = layernorm_output
else:
residual = attention_output
# MLP.
output = self.mlp(layernorm_output) + residual
return output
class BloomModel(nn.Module):
def __init__(self, config: BloomConfig):
super().__init__()
self.embed_dim = config.hidden_size
# Embedding + LN Embedding
self.word_embeddings = VocabParallelEmbedding(
config.vocab_size, self.embed_dim, perform_initialization=False)
self.word_embeddings_layernorm = nn.LayerNorm(
self.embed_dim, eps=config.layer_norm_epsilon)
# Transformer blocks
self.h = nn.ModuleList(
[BloomBlock(config) for _ in range(config.num_hidden_layers)])
# Final Layer Norm
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> torch.Tensor:
hidden_states = self.word_embeddings(input_ids)
hidden_states = self.word_embeddings_layernorm(hidden_states)
for i in range(len(self.h)):
if cache_events is None:
cache_event = None
else:
cache_event = cache_events[i]
layer = self.h[i]
hidden_states = layer(
position_ids,
hidden_states,
kv_caches[i],
input_metadata,
cache_event,
)
hidden_states = self.ln_f(hidden_states)
return hidden_states
class BloomForCausalLM(nn.Module):
def __init__(self, config: BloomConfig):
super().__init__()
self.config = config
self.transformer = BloomModel(config)
# TODO(zhuohan): create a new weight after implementing pipeline
# parallelism
self.lm_head_weight = self.transformer.word_embeddings.weight
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> SamplerOutput:
hidden_states = self.transformer(input_ids, positions, kv_caches,
input_metadata, cache_events)
next_tokens = self.sampler(self.lm_head_weight, hidden_states,
input_metadata)
return next_tokens
_column_parallel_weights = [
"word_embeddings.weight", "dense_h_to_4h.weight", "dense_h_to_4h.bias"
]
_row_parallel_weights = ["dense.weight", "dense_4h_to_h.weight"]
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
tp_rank = get_tensor_model_parallel_rank()
state_dict = self.state_dict()
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if name == "lm_head.weight":
# Since hidden_states are parallelized, we need to
# load lm_head.weight in parallel.
self._column_parallel_weights.append(name)
# If lm_head is provided, use it instead.
param = self.lm_head_weight
else:
if not name.startswith("transformer."):
name = "transformer." + name
param = state_dict[name]
if "query_key_value" in name:
# NOTE(woosuk): BLOOM's fused QKV has the shape of
# [num_heads * 3 * head_size, hidden_size], while the
# required shape is [3 * num_heads * head_size, hidden_size].
# Thus, we need weight conversion.
shard_size = param.shape[0]
start = shard_size * tp_rank
end = shard_size * (tp_rank + 1)
loaded_weight = loaded_weight[start:end]
num_heads = self.config.num_attention_heads
hidden_size = self.config.hidden_size
head_size = hidden_size // num_heads
if "query_key_value.weight" in name:
loaded_weight = loaded_weight.view(-1, 3, head_size,
hidden_size)
loaded_weight = loaded_weight.transpose(0, 1)
loaded_weight = loaded_weight.reshape(-1, hidden_size)
elif "query_key_value.bias" in name:
loaded_weight = loaded_weight.view(-1, 3, head_size)
loaded_weight = loaded_weight.transpose(0, 1)
loaded_weight = loaded_weight.reshape(-1)
else:
raise ValueError(f"Unexpected weight name: {name}")
load_tensor_parallel_weights(param, loaded_weight, name,
self._column_parallel_weights,
self._row_parallel_weights, tp_rank)