vllm/vllm/entrypoints/openai/serving_engine.py

494 lines
19 KiB
Python

import json
import pathlib
from dataclasses import dataclass
from http import HTTPStatus
from typing import Iterable, Iterator, List, Optional, Tuple, TypedDict, Union
from pydantic import Field
from typing_extensions import Annotated
from vllm.config import ModelConfig
from vllm.engine.protocol import EngineClient
from vllm.entrypoints.logger import RequestLogger
# yapf conflicts with isort for this block
# yapf: disable
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
CompletionRequest,
DetokenizeRequest,
EmbeddingRequest, ErrorResponse,
LoadLoraAdapterRequest,
ModelCard, ModelList,
ModelPermission,
TokenizeChatRequest,
TokenizeCompletionRequest,
TokenizeRequest,
UnloadLoraAdapterRequest)
# yapf: enable
from vllm.inputs.parse import parse_and_batch_prompt
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.pooling_params import PoolingParams
from vllm.prompt_adapter.request import PromptAdapterRequest
from vllm.sampling_params import BeamSearchParams, SamplingParams
from vllm.sequence import Logprob
from vllm.transformers_utils.tokenizer import AnyTokenizer
from vllm.utils import AtomicCounter
logger = init_logger(__name__)
@dataclass
class BaseModelPath:
name: str
model_path: str
@dataclass
class PromptAdapterPath:
name: str
local_path: str
@dataclass
class LoRAModulePath:
name: str
path: str
base_model_name: Optional[str] = None
AnyRequest = Union[ChatCompletionRequest, CompletionRequest, DetokenizeRequest,
EmbeddingRequest, TokenizeRequest]
class TextTokensPrompt(TypedDict):
prompt: str
prompt_token_ids: List[int]
class OpenAIServing:
def __init__(
self,
engine_client: EngineClient,
model_config: ModelConfig,
base_model_paths: List[BaseModelPath],
*,
lora_modules: Optional[List[LoRAModulePath]],
prompt_adapters: Optional[List[PromptAdapterPath]],
request_logger: Optional[RequestLogger],
return_tokens_as_token_ids: bool = False,
):
super().__init__()
self.engine_client = engine_client
self.model_config = model_config
self.max_model_len = model_config.max_model_len
self.base_model_paths = base_model_paths
self.lora_id_counter = AtomicCounter(0)
self.lora_requests = []
if lora_modules is not None:
self.lora_requests = [
LoRARequest(lora_name=lora.name,
lora_int_id=i,
lora_path=lora.path,
base_model_name=lora.base_model_name
if lora.base_model_name
and self._is_model_supported(lora.base_model_name)
else self.base_model_paths[0].name)
for i, lora in enumerate(lora_modules, start=1)
]
self.prompt_adapter_requests = []
if prompt_adapters is not None:
for i, prompt_adapter in enumerate(prompt_adapters, start=1):
with pathlib.Path(prompt_adapter.local_path,
"adapter_config.json").open() as f:
adapter_config = json.load(f)
num_virtual_tokens = adapter_config["num_virtual_tokens"]
self.prompt_adapter_requests.append(
PromptAdapterRequest(
prompt_adapter_name=prompt_adapter.name,
prompt_adapter_id=i,
prompt_adapter_local_path=prompt_adapter.local_path,
prompt_adapter_num_virtual_tokens=num_virtual_tokens))
self.request_logger = request_logger
self.return_tokens_as_token_ids = return_tokens_as_token_ids
async def show_available_models(self) -> ModelList:
"""Show available models. Right now we only have one model."""
model_cards = [
ModelCard(id=base_model.name,
max_model_len=self.max_model_len,
root=base_model.model_path,
permission=[ModelPermission()])
for base_model in self.base_model_paths
]
lora_cards = [
ModelCard(id=lora.lora_name,
root=lora.local_path,
parent=lora.base_model_name if lora.base_model_name else
self.base_model_paths[0].name,
permission=[ModelPermission()])
for lora in self.lora_requests
]
prompt_adapter_cards = [
ModelCard(id=prompt_adapter.prompt_adapter_name,
root=self.base_model_paths[0].name,
permission=[ModelPermission()])
for prompt_adapter in self.prompt_adapter_requests
]
model_cards.extend(lora_cards)
model_cards.extend(prompt_adapter_cards)
return ModelList(data=model_cards)
def create_error_response(
self,
message: str,
err_type: str = "BadRequestError",
status_code: HTTPStatus = HTTPStatus.BAD_REQUEST) -> ErrorResponse:
return ErrorResponse(message=message,
type=err_type,
code=status_code.value)
def create_streaming_error_response(
self,
message: str,
err_type: str = "BadRequestError",
status_code: HTTPStatus = HTTPStatus.BAD_REQUEST) -> str:
json_str = json.dumps({
"error":
self.create_error_response(message=message,
err_type=err_type,
status_code=status_code).model_dump()
})
return json_str
async def _check_model(
self,
request: AnyRequest,
) -> Optional[ErrorResponse]:
if self._is_model_supported(request.model):
return None
if request.model in [lora.lora_name for lora in self.lora_requests]:
return None
if request.model in [
prompt_adapter.prompt_adapter_name
for prompt_adapter in self.prompt_adapter_requests
]:
return None
return self.create_error_response(
message=f"The model `{request.model}` does not exist.",
err_type="NotFoundError",
status_code=HTTPStatus.NOT_FOUND)
def _maybe_get_adapters(
self, request: AnyRequest
) -> Union[Tuple[None, None], Tuple[LoRARequest, None], Tuple[
None, PromptAdapterRequest]]:
if self._is_model_supported(request.model):
return None, None
for lora in self.lora_requests:
if request.model == lora.lora_name:
return lora, None
for prompt_adapter in self.prompt_adapter_requests:
if request.model == prompt_adapter.prompt_adapter_name:
return None, prompt_adapter
# if _check_model has been called earlier, this will be unreachable
raise ValueError(f"The model `{request.model}` does not exist.")
def _normalize_prompt_text_to_input(
self,
request: AnyRequest,
tokenizer: AnyTokenizer,
prompt: str,
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]],
add_special_tokens: bool,
) -> TextTokensPrompt:
if truncate_prompt_tokens is None:
encoded = tokenizer(prompt, add_special_tokens=add_special_tokens)
else:
encoded = tokenizer(prompt,
add_special_tokens=add_special_tokens,
truncation=True,
max_length=truncate_prompt_tokens)
input_ids = encoded.input_ids
input_text = prompt
return self._validate_input(request, input_ids, input_text)
def _normalize_prompt_tokens_to_input(
self,
request: AnyRequest,
tokenizer: AnyTokenizer,
prompt_ids: List[int],
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]],
) -> TextTokensPrompt:
if truncate_prompt_tokens is None:
input_ids = prompt_ids
else:
input_ids = prompt_ids[-truncate_prompt_tokens:]
input_text = tokenizer.decode(input_ids)
return self._validate_input(request, input_ids, input_text)
def _validate_input(
self,
request: AnyRequest,
input_ids: List[int],
input_text: str,
) -> TextTokensPrompt:
token_num = len(input_ids)
# Note: EmbeddingRequest doesn't have max_tokens
if isinstance(request, EmbeddingRequest):
if token_num > self.max_model_len:
raise ValueError(
f"This model's maximum context length is "
f"{self.max_model_len} tokens. However, you requested "
f"{token_num} tokens in the input for embedding "
f"generation. Please reduce the length of the input.")
return TextTokensPrompt(prompt=input_text,
prompt_token_ids=input_ids)
# Note: TokenizeRequest and DetokenizeRequest doesn't have max_tokens
# and does not require model context length validation
if isinstance(request, (TokenizeCompletionRequest, TokenizeChatRequest,
DetokenizeRequest)):
return TextTokensPrompt(prompt=input_text,
prompt_token_ids=input_ids)
# chat completion endpoint supports max_completion_tokens
if isinstance(request, ChatCompletionRequest):
# TODO(#9845): remove max_tokens when field dropped from OpenAI API
max_tokens = request.max_completion_tokens or request.max_tokens
else:
max_tokens = request.max_tokens
if max_tokens is None:
if token_num >= self.max_model_len:
raise ValueError(
f"This model's maximum context length is "
f"{self.max_model_len} tokens. However, you requested "
f"{token_num} tokens in the messages, "
f"Please reduce the length of the messages.")
elif token_num + max_tokens > self.max_model_len:
raise ValueError(
f"This model's maximum context length is "
f"{self.max_model_len} tokens. However, you requested "
f"{max_tokens + token_num} tokens "
f"({token_num} in the messages, "
f"{max_tokens} in the completion). "
f"Please reduce the length of the messages or completion.")
return TextTokensPrompt(prompt=input_text, prompt_token_ids=input_ids)
def _tokenize_prompt_input(
self,
request: AnyRequest,
tokenizer: AnyTokenizer,
prompt_input: Union[str, List[int]],
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None,
add_special_tokens: bool = True,
) -> TextTokensPrompt:
"""
A simpler implementation of :meth:`_tokenize_prompt_input_or_inputs`
that assumes single input.
"""
return next(
self._tokenize_prompt_inputs(
request,
tokenizer,
[prompt_input],
truncate_prompt_tokens=truncate_prompt_tokens,
add_special_tokens=add_special_tokens,
))
def _tokenize_prompt_inputs(
self,
request: AnyRequest,
tokenizer: AnyTokenizer,
prompt_inputs: Iterable[Union[str, List[int]]],
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None,
add_special_tokens: bool = True,
) -> Iterator[TextTokensPrompt]:
"""
A simpler implementation of :meth:`_tokenize_prompt_input_or_inputs`
that assumes multiple inputs.
"""
for text in prompt_inputs:
if isinstance(text, str):
yield self._normalize_prompt_text_to_input(
request,
tokenizer,
prompt=text,
truncate_prompt_tokens=truncate_prompt_tokens,
add_special_tokens=add_special_tokens,
)
else:
yield self._normalize_prompt_tokens_to_input(
request,
tokenizer,
prompt_ids=text,
truncate_prompt_tokens=truncate_prompt_tokens,
)
def _tokenize_prompt_input_or_inputs(
self,
request: AnyRequest,
tokenizer: AnyTokenizer,
input_or_inputs: Union[str, List[str], List[int], List[List[int]]],
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=1)]] = None,
add_special_tokens: bool = True,
) -> Iterator[TextTokensPrompt]:
"""
Tokenize/detokenize depending on the input format.
According to `OpenAI API <https://platform.openai.com/docs/api-reference/embeddings/create>`_
, each input can be a string or array of tokens. Note that each request
can pass one or more inputs.
"""
for prompt_input in parse_and_batch_prompt(input_or_inputs):
# Although our type checking is based on mypy,
# VSCode Pyright extension should still work properly
# "is True" is required for Pyright to perform type narrowing
# See: https://github.com/microsoft/pyright/issues/7672
if prompt_input["is_tokens"] is False:
yield self._normalize_prompt_text_to_input(
request,
tokenizer,
prompt=prompt_input["content"],
truncate_prompt_tokens=truncate_prompt_tokens,
add_special_tokens=add_special_tokens,
)
else:
yield self._normalize_prompt_tokens_to_input(
request,
tokenizer,
prompt_ids=prompt_input["content"],
truncate_prompt_tokens=truncate_prompt_tokens,
)
def _log_inputs(
self,
request_id: str,
inputs: Union[str, List[int], TextTokensPrompt],
params: Optional[Union[SamplingParams, PoolingParams,
BeamSearchParams]],
lora_request: Optional[LoRARequest],
prompt_adapter_request: Optional[PromptAdapterRequest],
) -> None:
if self.request_logger is None:
return
if isinstance(inputs, str):
prompt = inputs
prompt_token_ids = None
elif isinstance(inputs, list):
prompt = None
prompt_token_ids = inputs
else:
prompt = inputs["prompt"]
prompt_token_ids = inputs["prompt_token_ids"]
self.request_logger.log_inputs(
request_id,
prompt,
prompt_token_ids,
params=params,
lora_request=lora_request,
prompt_adapter_request=prompt_adapter_request,
)
@staticmethod
def _get_decoded_token(logprob: Logprob,
token_id: int,
tokenizer: AnyTokenizer,
return_as_token_id: bool = False) -> str:
if return_as_token_id:
return f"token_id:{token_id}"
if logprob.decoded_token is not None:
return logprob.decoded_token
return tokenizer.decode(token_id)
async def _check_load_lora_adapter_request(
self, request: LoadLoraAdapterRequest) -> Optional[ErrorResponse]:
# Check if both 'lora_name' and 'lora_path' are provided
if not request.lora_name or not request.lora_path:
return self.create_error_response(
message="Both 'lora_name' and 'lora_path' must be provided.",
err_type="InvalidUserInput",
status_code=HTTPStatus.BAD_REQUEST)
# Check if the lora adapter with the given name already exists
if any(lora_request.lora_name == request.lora_name
for lora_request in self.lora_requests):
return self.create_error_response(
message=
f"The lora adapter '{request.lora_name}' has already been"
"loaded.",
err_type="InvalidUserInput",
status_code=HTTPStatus.BAD_REQUEST)
return None
async def _check_unload_lora_adapter_request(
self,
request: UnloadLoraAdapterRequest) -> Optional[ErrorResponse]:
# Check if either 'lora_name' or 'lora_int_id' is provided
if not request.lora_name and not request.lora_int_id:
return self.create_error_response(
message=
"either 'lora_name' and 'lora_int_id' needs to be provided.",
err_type="InvalidUserInput",
status_code=HTTPStatus.BAD_REQUEST)
# Check if the lora adapter with the given name exists
if not any(lora_request.lora_name == request.lora_name
for lora_request in self.lora_requests):
return self.create_error_response(
message=
f"The lora adapter '{request.lora_name}' cannot be found.",
err_type="InvalidUserInput",
status_code=HTTPStatus.BAD_REQUEST)
return None
async def load_lora_adapter(
self,
request: LoadLoraAdapterRequest) -> Union[ErrorResponse, str]:
error_check_ret = await self._check_load_lora_adapter_request(request)
if error_check_ret is not None:
return error_check_ret
lora_name, lora_path = request.lora_name, request.lora_path
unique_id = self.lora_id_counter.inc(1)
self.lora_requests.append(
LoRARequest(lora_name=lora_name,
lora_int_id=unique_id,
lora_path=lora_path))
return f"Success: LoRA adapter '{lora_name}' added successfully."
async def unload_lora_adapter(
self,
request: UnloadLoraAdapterRequest) -> Union[ErrorResponse, str]:
error_check_ret = await self._check_unload_lora_adapter_request(request
)
if error_check_ret is not None:
return error_check_ret
lora_name = request.lora_name
self.lora_requests = [
lora_request for lora_request in self.lora_requests
if lora_request.lora_name != lora_name
]
return f"Success: LoRA adapter '{lora_name}' removed successfully."
def _is_model_supported(self, model_name):
return any(model.name == model_name for model in self.base_model_paths)