vllm/vllm/compilation/collective_fusion.py
weiliang ae067888d6
Update Flashinfer to 0.2.14.post1 (#23537)
Signed-off-by: Siyuan Fu <siyuanf@nvidia.com>
Signed-off-by: siyuanf <siyuanf@nvidia.com>
Signed-off-by: Weiliang Liu <weiliangl@nvidia.com>
Signed-off-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Siyuan Fu <siyuanf@nvidia.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-08-25 18:30:44 -07:00

1172 lines
45 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from importlib.util import find_spec
from typing import Optional
import torch
import torch._inductor.pattern_matcher as pm
import torch.fx as fx
from torch._higher_order_ops.auto_functionalize import auto_functionalized
from torch._inductor.pattern_matcher import PatternMatcherPass
from torch.distributed._symmetric_memory import enable_symm_mem_for_group
from vllm.config import VllmConfig
from vllm.distributed import get_tp_group, tensor_model_parallel_all_reduce
from vllm.distributed.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.utils import direct_register_custom_op
from .vllm_inductor_pass import VllmInductorPass
FP8_DTYPE = current_platform.fp8_dtype()
if find_spec("flashinfer"):
try:
import flashinfer.comm as flashinfer_comm
flashinfer_comm = (flashinfer_comm if hasattr(
flashinfer_comm, "trtllm_allreduce_fusion") else None)
except ImportError:
flashinfer_comm = None
else:
flashinfer_comm = None
logger = init_logger(__name__)
ALLREDUCE_OP = torch.ops.vllm.all_reduce.default
RMS_OP = torch.ops._C.rms_norm.default
RMS_ADD_OP = torch.ops._C.fused_add_rms_norm.default
STATIC_FP8_QUANT_OP = torch.ops._C.static_scaled_fp8_quant.default
STATIC_FP4_QUANT_OP = torch.ops._C.scaled_fp4_quant.default
class BasePattern:
def __init__(self, dtype: torch.dtype, device: str):
self.dtype = dtype
self.device = device
self.tp = get_tp_group()
self.tp_size = get_tensor_model_parallel_world_size()
class GEMMReduceScatterPattern(BasePattern):
def get_inputs(self):
mul = torch.empty([16, 4], device=self.device, dtype=self.dtype)
mm_weight = torch.empty([4, 4], device=self.device, dtype=self.dtype)
return [mul, mm_weight]
def register(self, pm_pass: PatternMatcherPass):
def pattern(mul: torch.Tensor, mm_weight: torch.Tensor):
mm = torch.ops.aten.mm.default(mul, mm_weight)
reduce_scatter = torch.ops.vllm.reduce_scatter.default(
mm,
dim=0,
world_size=self.tp_size,
group_name=self.tp.unique_name,
)
return reduce_scatter
def replacement(mul: torch.Tensor, mm_weight: torch.Tensor):
gemm_rs = torch.ops.symm_mem.fused_matmul_reduce_scatter(
mul,
mm_weight,
"avg",
scatter_dim=0,
group_name=self.tp.device_group.group_name,
)
return gemm_rs
pm.register_replacement(pattern, replacement, self.get_inputs(),
pm.fwd_only, pm_pass)
class AllGatherGEMMPattern(BasePattern):
def get_inputs(self):
x = torch.empty([4, 4], device=self.device, dtype=self.dtype)
weight = torch.empty([4, 4], device=self.device, dtype=self.dtype)
return [x, weight]
def register(self, pm_pass: PatternMatcherPass):
def pattern(
x: torch.Tensor,
weight: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
all_gather = torch.ops.vllm.all_gather.default(
x,
dim=0,
world_size=self.tp_size,
group_name=self.tp.unique_name,
)
return torch.ops.aten.mm.default(all_gather, weight)
def replacement(
x: torch.Tensor,
weight: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
ag_output, mm_outputs = torch.ops.symm_mem.fused_all_gather_matmul(
x,
[weight],
gather_dim=0,
group_name=self.tp.device_group.group_name,
)
return mm_outputs
pm.register_replacement(pattern, replacement, self.get_inputs(),
pm.fwd_only, pm_pass)
class ScaledMMReduceScatterPattern(BasePattern):
def get_inputs(self):
input = torch.empty([16, 16], device=self.device, dtype=FP8_DTYPE)
mm_weight = torch.empty([16, 16], device=self.device,
dtype=FP8_DTYPE).contiguous().transpose(0, 1)
scale_a = torch.empty([16, 1], device=self.device, dtype=torch.float32)
scale_b = torch.empty([1, 16], device=self.device, dtype=torch.float32)
return [input, mm_weight, scale_a, scale_b]
def register(self, pm_pass: PatternMatcherPass):
def pattern(input: torch.Tensor, mat2: torch.Tensor,
scale_a: torch.Tensor,
scale_b: torch.Tensor) -> torch.Tensor:
scaled_mm = torch.ops.aten._scaled_mm.default(input,
mat2=mat2,
scale_a=scale_a,
scale_b=scale_b,
bias=None,
scale_result=None,
out_dtype=self.dtype)
reduce_scatter = torch.ops.vllm.reduce_scatter.default(
scaled_mm,
dim=0,
world_size=self.tp_size,
group_name=self.tp.unique_name)
return reduce_scatter
def replacement(input: torch.Tensor, mat2: torch.Tensor,
scale_a: torch.Tensor,
scale_b: torch.Tensor) -> torch.Tensor:
gemm_rs = torch.ops.symm_mem.fused_scaled_matmul_reduce_scatter(
input,
mat2,
scale_a,
scale_b,
"avg",
scatter_dim=0,
out_dtype=self.dtype,
group_name=self.tp.device_group.group_name,
)
return gemm_rs
pm.register_replacement(pattern, replacement, self.get_inputs(),
pm.fwd_only, pm_pass)
class AllGatherScaledMMPattern(BasePattern):
def get_inputs(self):
x = torch.empty([8, 16], device=self.device, dtype=FP8_DTYPE)
weight = torch.empty([16, 16], device=self.device,
dtype=FP8_DTYPE).contiguous().transpose(0, 1)
s1 = x.shape[0] * self.tp_size
scale_a = torch.empty([s1, 1], device=self.device, dtype=torch.float32)
scale_b = torch.empty([1, 16], device=self.device, dtype=torch.float32)
return [x, weight, scale_a, scale_b]
def register(self, pm_pass: PatternMatcherPass):
def pattern(
x: torch.Tensor,
weight: torch.Tensor,
scale_a: torch.Tensor,
scale_b: torch.Tensor,
) -> torch.Tensor:
all_gather = torch.ops.vllm.all_gather.default(
x,
dim=0,
world_size=self.tp_size,
group_name=self.tp.unique_name)
return torch.ops.aten._scaled_mm.default(all_gather,
mat2=weight,
scale_a=scale_a,
scale_b=scale_b,
bias=None,
scale_result=None,
out_dtype=self.dtype)
def replacement(x: torch.Tensor, weight: torch.Tensor,
scale_a: torch.Tensor,
scale_b: torch.Tensor) -> torch.Tensor:
ag_output, mm_outputs = torch.ops.symm_mem.fused_all_gather_scaled_matmul( # noqa
x,
[weight],
scale_a,
[scale_b],
gather_dim=0,
biases=[None],
result_scales=[None],
out_dtypes=[self.dtype],
use_fast_accum=[False],
group_name=self.tp.device_group.group_name,
)
return mm_outputs
pm.register_replacement(pattern, replacement, self.get_inputs(),
pm.fwd_only, pm_pass)
class CutlassScaledMMReduceScatterPattern(BasePattern):
def get_inputs(self):
input = torch.empty([16, 16], device=self.device, dtype=FP8_DTYPE)
mm_weight = torch.empty([16, 16], device=self.device,
dtype=FP8_DTYPE).contiguous().transpose(0, 1)
scale_a = torch.empty([16, 1], device=self.device, dtype=torch.float32)
scale_b = torch.empty([1, 16], device=self.device, dtype=torch.float32)
cutlass_mm_output = torch.empty([16, 16],
device=self.device,
dtype=self.dtype)
return [input, mm_weight, scale_a, scale_b, cutlass_mm_output]
def register(self, pm_pass: PatternMatcherPass):
def pattern(input: torch.Tensor, weight: torch.Tensor,
scale_a: torch.Tensor, scale_b: torch.Tensor,
cutlass_mm_output: torch.Tensor) -> torch.Tensor:
cutlass_scaled_mm = torch.ops.higher_order.auto_functionalized(
torch.ops._C.cutlass_scaled_mm.default,
out=cutlass_mm_output,
a=input,
b=weight,
a_scales=scale_a,
b_scales=scale_b,
bias=None)
reduce_scatter = torch.ops.vllm.reduce_scatter.default(
cutlass_scaled_mm[1],
dim=0,
world_size=self.tp_size,
group_name=self.tp.unique_name)
return reduce_scatter
def replacement(input: torch.Tensor, mat2: torch.Tensor,
scale_a: torch.Tensor, scale_b: torch.Tensor,
cutlass_mm_output: torch.Tensor) -> torch.Tensor:
gemm_rs = torch.ops.symm_mem.fused_scaled_matmul_reduce_scatter(
input,
mat2,
scale_a,
scale_b,
"avg",
scatter_dim=0,
out_dtype=self.dtype,
group_name=self.tp.device_group.group_name,
)
return gemm_rs
pm.register_replacement(pattern, replacement, self.get_inputs(),
pm.fwd_only, pm_pass)
class AllGatherCutlassScaledMMPattern(BasePattern):
def get_inputs(self):
x = torch.empty([8, 16], device=self.device, dtype=FP8_DTYPE)
weight = torch.empty([16, 16], device=self.device,
dtype=FP8_DTYPE).contiguous().transpose(0, 1)
s1 = x.shape[0] * self.tp_size
scale_a = torch.empty([s1, 1], device=self.device, dtype=torch.float32)
scale_b = torch.empty([1, 16], device=self.device, dtype=torch.float32)
s2 = weight.shape[1]
output = torch.empty([s1, s2], device=self.device, dtype=self.dtype)
return [x, weight, scale_a, scale_b, output]
def register(self, pm_pass: PatternMatcherPass):
def pattern(
x: torch.Tensor,
weight: torch.Tensor,
scale_a: torch.Tensor,
scale_b: torch.Tensor,
output: torch.Tensor,
) -> torch.Tensor:
all_gather = torch.ops.vllm.all_gather.default(
x,
dim=0,
world_size=self.tp_size,
group_name=self.tp.unique_name)
cutlass_scaled_mm = torch.ops.higher_order.auto_functionalized(
torch.ops._C.cutlass_scaled_mm.default,
out=output,
a=all_gather,
b=weight,
a_scales=scale_a,
b_scales=scale_b,
bias=None)
return cutlass_scaled_mm[1]
def replacement(x: torch.Tensor, weight: torch.Tensor,
scale_a: torch.Tensor, scale_b: torch.Tensor,
output: torch.Tensor) -> torch.Tensor:
ag_output, mm_outputs = torch.ops.symm_mem.fused_all_gather_scaled_matmul( # noqa
x,
[weight],
scale_a,
[scale_b],
gather_dim=0,
biases=[None],
result_scales=[None],
out_dtypes=[self.dtype],
use_fast_accum=[False],
group_name=self.tp.device_group.group_name,
)
return mm_outputs
pm.register_replacement(pattern, replacement, self.get_inputs(),
pm.fwd_only, pm_pass)
class AsyncTPPass(VllmInductorPass):
def __init__(self, config: VllmConfig):
super().__init__(config)
# Enable symmetric memory for the TP process group
enable_symm_mem_for_group(get_tp_group().device_group.group_name)
self.patterns: PatternMatcherPass = PatternMatcherPass(
pass_name="async_tp_pass")
GEMMReduceScatterPattern(self.model_dtype,
self.device).register(self.patterns)
AllGatherGEMMPattern(self.model_dtype,
self.device).register(self.patterns)
# These fusions are enabled only for bfloat16 models because
# `scaled_mm` or `cutlass_scaled_mm` with per-token (row-wise) scaling
# only supports bfloat16 as the output dtype.
if self.model_dtype == torch.bfloat16:
ScaledMMReduceScatterPattern(self.model_dtype,
self.device).register(self.patterns)
AllGatherScaledMMPattern(self.model_dtype,
self.device).register(self.patterns)
CutlassScaledMMReduceScatterPattern(
self.model_dtype, self.device).register(self.patterns)
AllGatherCutlassScaledMMPattern(
self.model_dtype, self.device).register(self.patterns)
def is_applicable_for_shape(self, shape: Optional[int]) -> bool:
# only do replace for specific shapes
tp_size = get_tensor_model_parallel_world_size()
return shape is not None and shape % tp_size == 0
def __call__(self, graph: fx.Graph):
self.begin()
self.dump_graph(graph, "before_async_tp_pass")
count = self.patterns.apply(graph)
logger.debug("Replaced %s patterns with async TP pass.", count)
self.dump_graph(graph, "after_async_tp_pass")
self.end_and_log()
if flashinfer_comm is not None:
_FI_WORKSPACE_TENSOR = None
MiB = 1024 * 1024
# Max size of the input tensor per world size
# to use flashinfer fused allreduce
_FI_MAX_SIZES = {
2: 64 * MiB, # 64MB
4: MiB, # 1MB
6: MiB // 2, # 512KB
8: MiB // 2, # 512KB
}
# opt for a more conservative default value
# when world size is not in _FI_MAX_SIZES
_DEFAULT_FI_MAX_SIZE = MiB // 2
def call_trtllm_fused_allreduce_norm(
allreduce_in: torch.Tensor,
residual: torch.Tensor,
rms_gamma: torch.Tensor,
rms_eps: float,
world_rank: int,
world_size: int,
launch_with_pdl: bool,
trigger_completion_at_end: bool,
fp32_acc: bool,
max_token_num: int,
pattern_code: int,
fuse_rms_quant: bool,
norm_out: Optional[torch.Tensor] = None,
quant_out: Optional[torch.Tensor] = None,
scale_out: Optional[torch.Tensor] = None,
scale_factor: Optional[torch.Tensor] = None,
) -> None:
num_tokens, hidden_size = allreduce_in.shape
element_size = allreduce_in.element_size()
current_tensor_size = num_tokens * hidden_size * element_size
max_fusion_size = max_token_num * hidden_size * element_size
use_flashinfer = current_tensor_size <= min(
_FI_MAX_SIZES.get(world_size, _DEFAULT_FI_MAX_SIZE),
max_fusion_size,
)
if use_flashinfer:
assert (_FI_WORKSPACE_TENSOR is not None
), "Flashinfer must be enabled when using flashinfer"
if norm_out is None:
norm_out = allreduce_in
residual_out = residual
else:
# return residual_out as allreduce_out with zeroed residual_in
# as flashinfer does not support rms_norm
# and allreduce_out together
residual_out = allreduce_in
# For the sizes that are smaller than the max size,
# we only use flashinfer one shot allreduce
flashinfer_comm.trtllm_allreduce_fusion(
allreduce_in=allreduce_in,
token_num=allreduce_in.shape[0],
residual_in=residual,
residual_out=residual_out,
norm_out=norm_out,
rms_gamma=rms_gamma,
rms_eps=rms_eps,
world_rank=world_rank,
world_size=world_size,
hidden_dim=allreduce_in.shape[-1],
workspace_ptrs=_FI_WORKSPACE_TENSOR,
launch_with_pdl=launch_with_pdl,
use_oneshot=True,
trigger_completion_at_end=trigger_completion_at_end,
fp32_acc=fp32_acc,
pattern_code=pattern_code,
allreduce_out=None,
quant_out=quant_out,
scale_out=scale_out,
# in vllm we only support swizzled layout
layout_code=flashinfer_comm.QuantizationSFLayout.
SWIZZLED_128x4,
scale_factor=scale_factor,
)
else:
allreduce_out = tensor_model_parallel_all_reduce(allreduce_in)
if (scale_factor is not None and scale_out is None
and fuse_rms_quant):
# Do fused rms norm static fp8 quant fused op
if norm_out is None:
torch.ops._C.fused_add_rms_norm_static_fp8_quant(
quant_out, allreduce_out, residual, rms_gamma,
scale_factor, rms_eps)
else:
torch.ops._C.rms_norm_static_fp8_quant(
quant_out, allreduce_out, rms_gamma, scale_factor,
rms_eps)
else:
if norm_out is None:
torch.ops._C.fused_add_rms_norm(allreduce_out, residual,
rms_gamma, rms_eps)
norm_out = allreduce_out
else:
torch.ops._C.rms_norm(norm_out, allreduce_out, rms_gamma,
rms_eps)
if scale_factor is not None:
if scale_out is not None:
torch.ops._C.scaled_fp4_quant(quant_out, norm_out,
scale_out, scale_factor)
else:
torch.ops._C.static_scaled_fp8_quant(
quant_out, norm_out, scale_factor)
if scale_factor is None or norm_out is not None:
# we need to return allreduce outpput
# in cases of non quant fused AR + RMS norm
# and fused AR + RMS norm + quant without fused add
allreduce_in.copy_(allreduce_out)
def call_trtllm_fused_allreduce_norm_fake(
allreduce_in: torch.Tensor,
residual: torch.Tensor,
rms_gamma: torch.Tensor,
rms_eps: float,
world_rank: int,
world_size: int,
launch_with_pdl: bool,
trigger_completion_at_end: bool,
fp32_acc: bool,
max_token_num: int,
pattern_code: int,
fuse_rms_quant: bool,
norm_out: Optional[torch.Tensor] = None,
quant_out: Optional[torch.Tensor] = None,
scale_out: Optional[torch.Tensor] = None,
scale_factor: Optional[torch.Tensor] = None) -> None:
pass
direct_register_custom_op(
op_name="flashinfer_trtllm_fused_allreduce_norm",
op_func=call_trtllm_fused_allreduce_norm,
mutates_args=[
"allreduce_in",
"residual",
"norm_out",
"quant_out",
"scale_out",
],
fake_impl=call_trtllm_fused_allreduce_norm_fake,
dispatch_key=current_platform.dispatch_key,
)
flashinfer_trtllm_fused_allreduce_norm = (
torch.ops.vllm.flashinfer_trtllm_fused_allreduce_norm.default)
class FlashInferFusedAllReduceParams:
"""Parameters for FlashInfer fused allreduce operations."""
def __init__(
self,
rank: int,
world_size: int,
use_fp32_lamport: bool = False,
max_token_num: int = 1024,
fuse_rms_quant: bool = False,
):
self.rank = rank
self.world_size = world_size
self.use_fp32_lamport = use_fp32_lamport
self.trigger_completion_at_end = True
self.launch_with_pdl = True
self.fp32_acc = True
self.use_oneshot = False
self.max_token_num = max_token_num
self.fuse_rms_quant = fuse_rms_quant
def get_trtllm_fused_allreduce_kwargs(self):
return {
"world_rank": self.rank,
"world_size": self.world_size,
"launch_with_pdl": self.launch_with_pdl,
"trigger_completion_at_end": self.trigger_completion_at_end,
"fp32_acc": self.fp32_acc,
"max_token_num": self.max_token_num,
"fuse_rms_quant": self.fuse_rms_quant,
}
class AllReduceRMSNormPattern(BasePattern):
"""
This pattern replaces the allreduce + rms norm (without residual)
with fused flashinfer implementation.
Applies to allreduce + rmsnorm before attn in the first Transformer block.
"""
def __init__(
self,
epsilon: float,
dtype: torch.dtype,
device: str,
allreduce_params: FlashInferFusedAllReduceParams,
):
super().__init__(dtype, device)
self.epsilon = epsilon
self.allreduce_params = allreduce_params
def get_inputs(self):
input = torch.empty([1, 8, 4], device=self.device, dtype=self.dtype)
rms_result = torch.empty([1, 8, 4],
device=self.device,
dtype=self.dtype)
weight = torch.empty([4], device=self.device, dtype=self.dtype)
return [input, rms_result, weight]
def register(self, pm_pass: PatternMatcherPass):
def pattern(input: torch.Tensor, rms_result: torch.Tensor,
weight: torch.Tensor):
allreduce_output = tensor_model_parallel_all_reduce(input)
rms = auto_functionalized(
RMS_OP,
result=rms_result,
input=allreduce_output,
weight=weight,
epsilon=self.epsilon,
)
# rms_result, allreduce_output
return rms[1], allreduce_output
def replacement(input: torch.Tensor, rms_result: torch.Tensor,
weight: torch.Tensor):
residual = torch.zeros_like(input)
allreduce = auto_functionalized(
flashinfer_trtllm_fused_allreduce_norm,
allreduce_in=input,
residual=residual,
norm_out=rms_result,
quant_out=None,
scale_out=None,
rms_gamma=weight,
rms_eps=self.epsilon,
pattern_code=flashinfer_comm.AllReduceFusionPattern.
kARResidualRMSNorm,
**self.allreduce_params.get_trtllm_fused_allreduce_kwargs(),
)
# rms_result, allreduce_in
return allreduce[3], allreduce[1]
pm.register_replacement(pattern, replacement, self.get_inputs(),
pm.fwd_only, pm_pass)
class AllReduceFusedAddRMSNormPattern(BasePattern):
"""
This pattern replaces the allreduce + rms norm (with residual)
with fused flashinfer implementation.
Applies to o_proj + rmsnorm after attn and mlp + rmsnorm before attn.
"""
def __init__(
self,
epsilon: float,
dtype: torch.dtype,
device: str,
allreduce_params: FlashInferFusedAllReduceParams,
):
super().__init__(dtype, device)
self.epsilon = epsilon
self.allreduce_params = allreduce_params
def get_inputs(self):
input = torch.empty([4, 4], device=self.device, dtype=self.dtype)
residual = torch.empty([4, 4], device=self.device, dtype=self.dtype)
weight = torch.empty([4, 4], device=self.device, dtype=self.dtype)
return [
residual,
input,
weight,
]
def register(self, pm_pass: PatternMatcherPass):
def pattern(residual: torch.Tensor, input: torch.Tensor,
weight: torch.Tensor):
allreduce_output = tensor_model_parallel_all_reduce(input)
rms = auto_functionalized(
RMS_ADD_OP,
input=allreduce_output,
residual=residual,
weight=weight,
epsilon=self.epsilon,
)
# input, residual
return rms[1], rms[2]
def replacement(residual: torch.Tensor, input: torch.Tensor,
weight: torch.Tensor):
allreduce = auto_functionalized(
flashinfer_trtllm_fused_allreduce_norm,
allreduce_in=input,
residual=residual,
norm_out=None,
quant_out=None,
scale_out=None,
rms_gamma=weight,
rms_eps=self.epsilon,
pattern_code=flashinfer_comm.AllReduceFusionPattern.
kARResidualRMSNorm,
**self.allreduce_params.get_trtllm_fused_allreduce_kwargs(),
)
# allreduce_in, residual
return allreduce[1], allreduce[2]
pm.register_replacement(pattern, replacement, self.get_inputs(),
pm.fwd_only, pm_pass)
class AllReduceFusedRMSNormStaticQuantFP8Pattern(BasePattern):
"""
This pattern replaces the allreduce + rms norm (without residual)
+ static fp8 quant with fused flashinfer implementation.
Applies to allreduce + rmsnorm + quant before attn
in the first Transformer block.
"""
def __init__(self, epsilon: float, dtype: torch.dtype, device: str,
allreduce_params: FlashInferFusedAllReduceParams):
super().__init__(dtype, device)
self.epsilon = epsilon
self.allreduce_params = allreduce_params
self.quant_dtype = torch.float8_e4m3fn
def register(self, pm_pass: PatternMatcherPass):
def get_inputs():
input = torch.zeros([1, 8, 4],
device=self.device,
dtype=self.dtype)
rmsnorm_result = torch.empty([1, 8, 4],
device=self.device,
dtype=self.dtype)
quant_result = torch.empty([1, 8, 4],
device=self.device,
dtype=self.quant_dtype)
weight = torch.empty([4], device=self.device, dtype=self.dtype)
scale = torch.tensor(1.0, device=self.device, dtype=torch.float32)
return [input, rmsnorm_result, quant_result, weight, scale]
def pattern(
input: torch.Tensor,
rmsnorm_result: torch.Tensor,
quant_result: torch.Tensor,
weight: torch.Tensor,
scale: torch.Tensor,
):
all_reduce = tensor_model_parallel_all_reduce(input)
rmsnorm_out_tuple = auto_functionalized(RMS_OP,
result=rmsnorm_result,
input=all_reduce,
weight=weight,
epsilon=self.epsilon)
quant_out_tuple = auto_functionalized(STATIC_FP8_QUANT_OP,
result=quant_result,
input=rmsnorm_out_tuple[1],
scale=scale)
# quant_out, allreduce_output
return quant_out_tuple[1], all_reduce
def replacement(input: torch.Tensor, result_rms: torch.Tensor,
quant_result: torch.Tensor, weight: torch.Tensor,
scale: torch.Tensor):
residual = torch.zeros_like(input)
allreduce = auto_functionalized(
flashinfer_trtllm_fused_allreduce_norm,
allreduce_in=input,
residual=residual,
norm_out=result_rms,
quant_out=quant_result,
scale_out=None,
rms_gamma=weight,
rms_eps=self.epsilon,
pattern_code=flashinfer_comm.AllReduceFusionPattern.
kARResidualRMSNormFP8Quant, # we don't use norm_out afterwards
scale_factor=scale,
**self.allreduce_params.get_trtllm_fused_allreduce_kwargs(),
)
# quant_out, allreduce_output
return allreduce[4], allreduce[1]
pm.register_replacement(pattern, replacement, get_inputs(),
pm.fwd_only, pm_pass)
class AllReduceFusedAddRMSNormStaticQuantFP8Pattern(BasePattern):
"""
This pattern replaces the allreduce + rms norm (with residual)
+ static fp8 quant with fused flashinfer implementation.
Applies to o_proj + rmsnorm after attn + quant and
mlp + rmsnorm + quant before attn.
"""
def __init__(self, epsilon: float, dtype: torch.dtype, device: str,
allreduce_params: FlashInferFusedAllReduceParams):
super().__init__(dtype, device)
self.epsilon = epsilon
self.allreduce_params = allreduce_params
self.quant_dtype = torch.float8_e4m3fn
def register(self, pm_pass: PatternMatcherPass):
def get_inputs():
input = torch.empty([4, 4], device=self.device, dtype=self.dtype)
residual = torch.empty([4, 4],
device=self.device,
dtype=self.dtype)
weight = torch.empty([4, 4], device=self.device, dtype=self.dtype)
quant_result = torch.empty([4, 4],
device=self.device,
dtype=self.quant_dtype)
scale = torch.empty([1, 1],
device=self.device,
dtype=torch.float32)
return [
quant_result,
residual,
input,
weight,
scale,
]
def pattern(
quant_result: torch.Tensor,
residual: torch.Tensor,
input: torch.Tensor,
weight: torch.Tensor,
scale: torch.Tensor,
):
allreduce_output = tensor_model_parallel_all_reduce(input)
fused_add_rmsnorm_out_tuple = \
auto_functionalized(
RMS_ADD_OP,
input=allreduce_output,
residual=residual,
weight=weight,
epsilon=self.epsilon)
quant_out_tuple = auto_functionalized(
STATIC_FP8_QUANT_OP,
result=quant_result,
input=fused_add_rmsnorm_out_tuple[1],
scale=scale)
# quant_out, allreduce_output
return quant_out_tuple[1], fused_add_rmsnorm_out_tuple[2]
def replacement(quant_result: torch.Tensor, residual: torch.Tensor,
input: torch.Tensor, weight: torch.Tensor,
scale: torch.Tensor):
allreduce = auto_functionalized(
flashinfer_trtllm_fused_allreduce_norm,
allreduce_in=input,
residual=residual,
norm_out=None,
quant_out=quant_result,
scale_out=None,
rms_gamma=weight,
rms_eps=self.epsilon,
pattern_code=flashinfer_comm.AllReduceFusionPattern.
kARResidualRMSNormFP8Quant, # we don't use norm_out afterwards
scale_factor=scale,
**self.allreduce_params.get_trtllm_fused_allreduce_kwargs(),
)
# # quant_out, rms_norm_residual
return allreduce[4], allreduce[2]
pm.register_replacement(pattern, replacement, get_inputs(),
pm.fwd_only, pm_pass)
class AllReduceFusedRMSNormStaticQuantNVFP4Pattern(BasePattern):
"""
This pattern replaces the allreduce + rms norm (without residual)
+ static nvfp4 quant with fused flashinfer implementation.
Applies to allreduce + rmsnorm + quant before attn
in the first Transformer block.
"""
def __init__(self, epsilon: float, dtype: torch.dtype, device: str,
allreduce_params: FlashInferFusedAllReduceParams):
super().__init__(dtype, device)
self.epsilon = epsilon
self.allreduce_params = allreduce_params
def register(self, pm_pass: PatternMatcherPass):
def get_inputs():
input = torch.empty([1, 16, 16],
device=self.device,
dtype=self.dtype)
rmsnorm_result = torch.empty([1, 16, 16],
device=self.device,
dtype=self.dtype)
quant_result = torch.empty((16, 8),
device=self.device,
dtype=torch.uint8)
input_global_scale = torch.empty([1, 1],
device=self.device,
dtype=torch.float32)
weight = torch.empty([16], device=self.device, dtype=self.dtype)
output_scale = torch.empty([128, 4],
device=self.device,
dtype=torch.int32)
return [
input, rmsnorm_result, quant_result, weight,
input_global_scale, output_scale
]
def pattern(
input: torch.Tensor,
rmsnorm_result: torch.Tensor,
quant_result: torch.Tensor,
weight: torch.Tensor,
input_global_scale: torch.Tensor,
output_scale: torch.Tensor,
):
all_reduce = tensor_model_parallel_all_reduce(input)
rmsnorm_out_tuple = auto_functionalized(RMS_OP,
result=rmsnorm_result,
input=all_reduce,
weight=weight,
epsilon=self.epsilon)
quant_out_tuple = auto_functionalized(
STATIC_FP4_QUANT_OP,
output=quant_result,
input=rmsnorm_out_tuple[1],
output_scale=output_scale,
input_scale=input_global_scale)
# quant_out, allreduce_output, output_scale
return quant_out_tuple[1], all_reduce, quant_out_tuple[2]
def replacement(input: torch.Tensor, result_rms: torch.Tensor,
quant_result: torch.Tensor, weight: torch.Tensor,
input_global_scale: torch.Tensor,
output_scale: torch.Tensor):
residual = torch.zeros_like(input)
allreduce = auto_functionalized(
flashinfer_trtllm_fused_allreduce_norm,
allreduce_in=input,
residual=residual,
norm_out=result_rms,
quant_out=quant_result,
scale_out=output_scale,
rms_gamma=weight,
rms_eps=self.epsilon,
pattern_code=flashinfer_comm.AllReduceFusionPattern.
kARResidualRMSNormFP4Quant, # we don't use norm_out afterwards
scale_factor=input_global_scale,
**self.allreduce_params.get_trtllm_fused_allreduce_kwargs(),
)
# quant_out, allreduce_output, output_scale
return allreduce[4], allreduce[1], allreduce[5]
pm.register_replacement(pattern, replacement, get_inputs(),
pm.fwd_only, pm_pass)
class AllReduceFusedAddRMSNormStaticQuantNVFP4Pattern(BasePattern):
"""
This pattern replaces the allreduce + rms norm (with residual)
+ static nvfp4 quant with fused flashinfer implementation.
Applies to o_proj + rmsnorm after attn + quant and
mlp + rmsnorm + quant before attn.
"""
def __init__(self, epsilon: float, dtype: torch.dtype, device: str,
allreduce_params: FlashInferFusedAllReduceParams):
super().__init__(dtype, device)
self.epsilon = epsilon
self.allreduce_params = allreduce_params
def register(self, pm_pass: PatternMatcherPass):
def get_inputs():
input = torch.empty([16, 16], device=self.device, dtype=self.dtype)
residual = torch.empty([16, 16],
device=self.device,
dtype=self.dtype)
weight = torch.empty([16, 16],
device=self.device,
dtype=self.dtype)
quant_result = torch.empty((16, 8),
device=self.device,
dtype=torch.uint8)
input_global_scale = torch.empty([1, 1],
device=self.device,
dtype=torch.float32)
output_scale = torch.empty([128, 4],
device=self.device,
dtype=torch.int32)
return [
quant_result,
residual,
input,
output_scale,
weight,
input_global_scale,
]
def pattern(quant_result: torch.Tensor, residual: torch.Tensor,
input: torch.Tensor, output_scale: torch.Tensor,
weight: torch.Tensor, input_global_scale: torch.Tensor):
allreduce_output = tensor_model_parallel_all_reduce(input)
fused_add_rmsnorm_out_tuple = \
auto_functionalized(
RMS_ADD_OP,
input=allreduce_output,
residual=residual,
weight=weight,
epsilon=self.epsilon)
quant_out_tuple = auto_functionalized(
STATIC_FP4_QUANT_OP,
output=quant_result,
input=fused_add_rmsnorm_out_tuple[1],
output_scale=output_scale,
input_scale=input_global_scale)
# quant_out, allreduce_output, output_scale
return quant_out_tuple[1], fused_add_rmsnorm_out_tuple[
2], quant_out_tuple[2]
def replacement(quant_result: torch.Tensor, residual: torch.Tensor,
input: torch.Tensor, output_scale: torch.Tensor,
weight: torch.Tensor,
input_global_scale: torch.Tensor):
allreduce = auto_functionalized(
flashinfer_trtllm_fused_allreduce_norm,
allreduce_in=input,
residual=residual,
norm_out=None,
quant_out=quant_result,
scale_out=output_scale,
rms_gamma=weight,
rms_eps=self.epsilon,
pattern_code=flashinfer_comm.AllReduceFusionPattern.
kARResidualRMSNormFP4Quant, # we don't use norm_out afterwards
scale_factor=input_global_scale,
**self.allreduce_params.get_trtllm_fused_allreduce_kwargs(),
)
# quant_out, rms_norm_residual, output_scale
return allreduce[4], allreduce[2], allreduce[5]
pm.register_replacement(pattern, replacement, get_inputs(),
pm.fwd_only, pm_pass)
class AllReduceFusionPass(VllmInductorPass):
def __init__(self, config: VllmConfig):
super().__init__(config)
self.disabled = True
self.tp_size = get_tensor_model_parallel_world_size()
if self.tp_size <= 1:
return
self.patterns: PatternMatcherPass = PatternMatcherPass(
pass_name="all_reduce_fusion_pass")
if config.model_config is None:
return
self.hidden_dim = config.model_config.get_hidden_size()
self.group = get_tp_group().device_group
rank = get_tensor_model_parallel_rank()
use_fp32_lamport = self.model_dtype == torch.float32
if flashinfer_comm is None:
logger.warning(
"Flashinfer is not installed or comm module not found, "
"skipping allreduce fusion pass")
return
# Check if the world size is supported
if self.tp_size not in _FI_MAX_SIZES:
logger.warning(
"Flashinfer allreduce fusion is not "
"supported for world size %s",
self.tp_size,
)
return
max_num_token = min(
_FI_MAX_SIZES.get(self.tp_size, _DEFAULT_FI_MAX_SIZE) //
(self.hidden_dim * self.tp_size * (4 if use_fp32_lamport else 2)),
config.compilation_config.pass_config.
fi_allreduce_fusion_max_token_num)
self.ipc_handles, workspace_tensor = (
flashinfer_comm.trtllm_create_ipc_workspace_for_all_reduce_fusion(
tp_rank=rank,
tp_size=self.tp_size,
max_token_num=max_num_token,
hidden_dim=self.hidden_dim,
group=self.group,
use_fp32_lamport=use_fp32_lamport,
))
global _FI_WORKSPACE_TENSOR
_FI_WORKSPACE_TENSOR = workspace_tensor
self.allreduce_params = FlashInferFusedAllReduceParams(
rank=rank,
world_size=self.tp_size,
use_fp32_lamport=use_fp32_lamport,
max_token_num=max_num_token,
# fuse rms norm static fp8 quant fused op
# in fallback path, when we don't use flashinfer
fuse_rms_quant=config.compilation_config.pass_config.enable_fusion)
for epsilon in [1e-5, 1e-6]:
AllReduceFusedRMSNormStaticQuantFP8Pattern(
epsilon,
self.model_dtype,
self.device,
self.allreduce_params,
).register(self.patterns)
AllReduceFusedAddRMSNormStaticQuantFP8Pattern(
epsilon,
self.model_dtype,
self.device,
self.allreduce_params,
).register(self.patterns)
if current_platform.has_device_capability(100):
AllReduceFusedRMSNormStaticQuantNVFP4Pattern(
epsilon,
self.model_dtype,
self.device,
self.allreduce_params,
).register(self.patterns)
AllReduceFusedAddRMSNormStaticQuantNVFP4Pattern(
epsilon,
self.model_dtype,
self.device,
self.allreduce_params,
).register(self.patterns)
AllReduceRMSNormPattern(
epsilon,
self.model_dtype,
self.device,
self.allreduce_params,
).register(self.patterns)
AllReduceFusedAddRMSNormPattern(
epsilon,
self.model_dtype,
self.device,
self.allreduce_params,
).register(self.patterns)
# WARNING: This is a hack to clear the pattern matcher cache
# and allow multiple values of epsilon.
torch._inductor.pattern_matcher._seen_patterns.clear()
self.disabled = False
def __call__(self, graph: fx.Graph):
if self.disabled:
return
self.begin()
self.dump_graph(graph, "before_all_reduce_fusion_pass")
count = self.patterns.apply(graph)
logger.debug("Replaced %s patterns", count)
self.dump_graph(graph, "after_all_reduce_fusion_pass")
self.end_and_log()
def __del__(self):
if self.disabled:
return
if flashinfer_comm is not None:
flashinfer_comm.trtllm_destroy_ipc_workspace_for_all_reduce(
self.ipc_handles, self.group)