vllm/tests/entrypoints/openai/test_response_api_parsable_context.py
Andrew Xia da7bc54ea8
[responsesAPI][5] ResponsesParser with tools for full MCP python loop (#29798)
Signed-off-by: Andrew Xia <axia@fb.com>
Signed-off-by: Andrew Xia <axia@meta.com>
Co-authored-by: Andrew Xia <axia@fb.com>
2025-12-05 11:11:50 -05:00

181 lines
5.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import importlib
import json
import pytest
import pytest_asyncio
from openai import OpenAI
from ...utils import RemoteOpenAIServer
MODEL_NAME = "Qwen/Qwen3-8B"
@pytest.fixture(scope="module")
def server():
assert importlib.util.find_spec("gpt_oss") is not None, (
"Harmony tests require gpt_oss package to be installed"
)
args = [
"--reasoning-parser",
"qwen3",
"--max_model_len",
"5000",
"--structured-outputs-config.backend",
"xgrammar",
"--enable-auto-tool-choice",
"--tool-call-parser",
"hermes",
"--tool-server",
"demo",
]
env_dict = dict(
VLLM_ENABLE_RESPONSES_API_STORE="1",
VLLM_USE_EXPERIMENTAL_PARSER_CONTEXT="1",
PYTHON_EXECUTION_BACKEND="dangerously_use_uv",
)
with RemoteOpenAIServer(MODEL_NAME, args, env_dict=env_dict) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_basic(client: OpenAI, model_name: str):
response = await client.responses.create(
model=model_name,
input="What is 13 * 24?",
)
assert response is not None
print("response: ", response)
assert response.status == "completed"
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_reasoning_and_function_items(client: OpenAI, model_name: str):
response = await client.responses.create(
model=model_name,
input=[
{"type": "message", "content": "Hello.", "role": "user"},
{
"type": "reasoning",
"id": "lol",
"content": [
{
"type": "reasoning_text",
"text": "We need to respond: greeting.",
}
],
"summary": [],
},
{
"arguments": '{"location": "Paris", "unit": "celsius"}',
"call_id": "call_5f7b38f3b81e4b8380fd0ba74f3ca3ab",
"name": "get_weather",
"type": "function_call",
"id": "fc_4fe5d6fc5b6c4d6fa5f24cc80aa27f78",
"status": "completed",
},
{
"call_id": "call_5f7b38f3b81e4b8380fd0ba74f3ca3ab",
"id": "fc_4fe5d6fc5b6c4d6fa5f24cc80aa27f78",
"output": "The weather in Paris is 20 Celsius",
"status": "completed",
"type": "function_call_output",
},
],
temperature=0.0,
)
assert response is not None
assert response.status == "completed"
# make sure we get a reasoning and text output
assert response.output[0].type == "reasoning"
assert response.output[1].type == "message"
assert type(response.output[1].content[0].text) is str
def get_horoscope(sign):
return f"{sign}: Next Tuesday you will befriend a baby otter."
def call_function(name, args):
if name == "get_horoscope":
return get_horoscope(**args)
else:
raise ValueError(f"Unknown function: {name}")
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_function_call_first_turn(client: OpenAI, model_name: str):
tools = [
{
"type": "function",
"name": "get_horoscope",
"description": "Get today's horoscope for an astrological sign.",
"parameters": {
"type": "object",
"properties": {
"sign": {"type": "string"},
},
"required": ["sign"],
"additionalProperties": False,
},
"strict": True,
}
]
response = await client.responses.create(
model=model_name,
input="What is the horoscope for Aquarius today?",
tools=tools,
temperature=0.0,
)
assert response is not None
assert response.status == "completed"
assert len(response.output) == 2
assert response.output[0].type == "reasoning"
assert response.output[1].type == "function_call"
function_call = response.output[1]
assert function_call.name == "get_horoscope"
assert function_call.call_id is not None
args = json.loads(function_call.arguments)
assert "sign" in args
# the multi turn function call is tested above in
# test_reasoning_and_function_items
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_mcp_tool_call(client: OpenAI, model_name: str):
response = await client.responses.create(
model=model_name,
input="What is 13 * 24? Use python to calculate the result.",
tools=[{"type": "code_interpreter", "container": {"type": "auto"}}],
temperature=0.0,
)
assert response is not None
assert response.status == "completed"
assert response.output[0].type == "reasoning"
assert response.output[1].type == "mcp_call"
assert type(response.output[1].arguments) is str
assert type(response.output[1].output) is str
assert response.output[2].type == "reasoning"
# make sure the correct math is in the final output
assert response.output[3].type == "message"
assert "312" in response.output[3].content[0].text