mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-17 14:35:44 +08:00
Signed-off-by: Andrew Xia <axia@fb.com> Signed-off-by: Andrew Xia <axia@meta.com> Co-authored-by: Andrew Xia <axia@fb.com>
181 lines
5.5 KiB
Python
181 lines
5.5 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import importlib
|
|
import json
|
|
|
|
import pytest
|
|
import pytest_asyncio
|
|
from openai import OpenAI
|
|
|
|
from ...utils import RemoteOpenAIServer
|
|
|
|
MODEL_NAME = "Qwen/Qwen3-8B"
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def server():
|
|
assert importlib.util.find_spec("gpt_oss") is not None, (
|
|
"Harmony tests require gpt_oss package to be installed"
|
|
)
|
|
|
|
args = [
|
|
"--reasoning-parser",
|
|
"qwen3",
|
|
"--max_model_len",
|
|
"5000",
|
|
"--structured-outputs-config.backend",
|
|
"xgrammar",
|
|
"--enable-auto-tool-choice",
|
|
"--tool-call-parser",
|
|
"hermes",
|
|
"--tool-server",
|
|
"demo",
|
|
]
|
|
env_dict = dict(
|
|
VLLM_ENABLE_RESPONSES_API_STORE="1",
|
|
VLLM_USE_EXPERIMENTAL_PARSER_CONTEXT="1",
|
|
PYTHON_EXECUTION_BACKEND="dangerously_use_uv",
|
|
)
|
|
|
|
with RemoteOpenAIServer(MODEL_NAME, args, env_dict=env_dict) as remote_server:
|
|
yield remote_server
|
|
|
|
|
|
@pytest_asyncio.fixture
|
|
async def client(server):
|
|
async with server.get_async_client() as async_client:
|
|
yield async_client
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
async def test_basic(client: OpenAI, model_name: str):
|
|
response = await client.responses.create(
|
|
model=model_name,
|
|
input="What is 13 * 24?",
|
|
)
|
|
assert response is not None
|
|
print("response: ", response)
|
|
assert response.status == "completed"
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
async def test_reasoning_and_function_items(client: OpenAI, model_name: str):
|
|
response = await client.responses.create(
|
|
model=model_name,
|
|
input=[
|
|
{"type": "message", "content": "Hello.", "role": "user"},
|
|
{
|
|
"type": "reasoning",
|
|
"id": "lol",
|
|
"content": [
|
|
{
|
|
"type": "reasoning_text",
|
|
"text": "We need to respond: greeting.",
|
|
}
|
|
],
|
|
"summary": [],
|
|
},
|
|
{
|
|
"arguments": '{"location": "Paris", "unit": "celsius"}',
|
|
"call_id": "call_5f7b38f3b81e4b8380fd0ba74f3ca3ab",
|
|
"name": "get_weather",
|
|
"type": "function_call",
|
|
"id": "fc_4fe5d6fc5b6c4d6fa5f24cc80aa27f78",
|
|
"status": "completed",
|
|
},
|
|
{
|
|
"call_id": "call_5f7b38f3b81e4b8380fd0ba74f3ca3ab",
|
|
"id": "fc_4fe5d6fc5b6c4d6fa5f24cc80aa27f78",
|
|
"output": "The weather in Paris is 20 Celsius",
|
|
"status": "completed",
|
|
"type": "function_call_output",
|
|
},
|
|
],
|
|
temperature=0.0,
|
|
)
|
|
assert response is not None
|
|
assert response.status == "completed"
|
|
# make sure we get a reasoning and text output
|
|
assert response.output[0].type == "reasoning"
|
|
assert response.output[1].type == "message"
|
|
assert type(response.output[1].content[0].text) is str
|
|
|
|
|
|
def get_horoscope(sign):
|
|
return f"{sign}: Next Tuesday you will befriend a baby otter."
|
|
|
|
|
|
def call_function(name, args):
|
|
if name == "get_horoscope":
|
|
return get_horoscope(**args)
|
|
else:
|
|
raise ValueError(f"Unknown function: {name}")
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
async def test_function_call_first_turn(client: OpenAI, model_name: str):
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"name": "get_horoscope",
|
|
"description": "Get today's horoscope for an astrological sign.",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"sign": {"type": "string"},
|
|
},
|
|
"required": ["sign"],
|
|
"additionalProperties": False,
|
|
},
|
|
"strict": True,
|
|
}
|
|
]
|
|
|
|
response = await client.responses.create(
|
|
model=model_name,
|
|
input="What is the horoscope for Aquarius today?",
|
|
tools=tools,
|
|
temperature=0.0,
|
|
)
|
|
assert response is not None
|
|
assert response.status == "completed"
|
|
assert len(response.output) == 2
|
|
assert response.output[0].type == "reasoning"
|
|
assert response.output[1].type == "function_call"
|
|
|
|
function_call = response.output[1]
|
|
assert function_call.name == "get_horoscope"
|
|
assert function_call.call_id is not None
|
|
|
|
args = json.loads(function_call.arguments)
|
|
assert "sign" in args
|
|
|
|
# the multi turn function call is tested above in
|
|
# test_reasoning_and_function_items
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
|
async def test_mcp_tool_call(client: OpenAI, model_name: str):
|
|
response = await client.responses.create(
|
|
model=model_name,
|
|
input="What is 13 * 24? Use python to calculate the result.",
|
|
tools=[{"type": "code_interpreter", "container": {"type": "auto"}}],
|
|
temperature=0.0,
|
|
)
|
|
|
|
assert response is not None
|
|
assert response.status == "completed"
|
|
assert response.output[0].type == "reasoning"
|
|
assert response.output[1].type == "mcp_call"
|
|
assert type(response.output[1].arguments) is str
|
|
assert type(response.output[1].output) is str
|
|
assert response.output[2].type == "reasoning"
|
|
# make sure the correct math is in the final output
|
|
assert response.output[3].type == "message"
|
|
assert "312" in response.output[3].content[0].text
|