Woosuk Kwon b411418ff0
[Chore] Remove Sampler from Model Code (#17084)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-04-24 02:49:33 -07:00

657 lines
25 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from collections.abc import Iterable, Mapping, Sequence
from typing import List, Optional, Set, Tuple, TypedDict, Union
import torch
import torch.nn as nn
from transformers import AriaConfig, AriaTextConfig, BatchFeature
from transformers.models.aria.modeling_aria import AriaCrossAttention
from transformers.models.aria.processing_aria import AriaProcessor
from vllm.config import CacheConfig, QuantizationConfig, VllmConfig
from vllm.distributed import get_tensor_model_parallel_rank
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader, maybe_remap_kv_scale_name)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs)
from vllm.multimodal.parse import MultiModalDataItems
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
# yapf: disable
from .idefics2_vision_model import Idefics2VisionConfig
from .idefics2_vision_model import (
Idefics2VisionTransformer as Idefics3VisionTransformer)
# yapf: enable
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsQuant
from .llama import LlamaDecoderLayer, LlamaMLP, LlamaModel
from .utils import (AutoWeightsLoader, WeightsMapper, flatten_bn,
is_pp_missing_parameter, maybe_prefix,
merge_multimodal_embeddings)
class AriaImagePixelInputs(TypedDict):
pixel_values: torch.Tensor
pixel_mask: Optional[torch.Tensor]
"""
Shape:
pixel_values: `(batch_size * num_images, num_channels, height, width)`
pixel_mask: `(batch_size * num_images, height, width)`
"""
class AriaVisionTransformer(Idefics3VisionTransformer, SupportsQuant):
packed_modules_mapping = {"qkv_proj": ["q_proj", "k_proj", "v_proj"]}
def __init__(
self,
config: Idefics2VisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__(config, quant_config=quant_config, prefix=prefix)
# Unlike Idefics3VisionTransformer which uses LayerNorm after the
# final layer, Aria omits this normalization, so we replace it with an
# Identity layer
self.post_layernorm = nn.Identity()
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]
params_dict = dict(self.named_parameters())
loaded_params: Set[str] = set()
for name, loaded_weight in weights:
# NOTE: post_layernorm is not used in Aria
if "post_layernorm" in name:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class AriaProjectorMLP(nn.Module):
def __init__(
self,
in_features: int,
hidden_features: int,
output_dim: int,
) -> None:
super().__init__()
self.linear_in = ColumnParallelLinear(in_features,
hidden_features,
bias=False)
self.linear_out = RowParallelLinear(hidden_features,
output_dim,
bias=False)
self.act = get_act_fn("gelu_new")
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.linear_in(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.linear_out(hidden_states)
return hidden_states
class AriaProjector(nn.Module):
"""
A projection module with one cross attention layer and one FFN layer, which
projects ViT's outputs into MoE's inputs.
Args:
patch_to_query_dict (dict): Maps patch numbers to their corresponding
query numbers,
e.g., {1225: 128, 4900: 256}. This allows for different query sizes
based on image resolution.
embed_dim (int): Embedding dimension.
num_heads (int): Number of attention heads.
kv_dim (int): Dimension of key and value.
ff_dim (int): Hidden dimension of the feed-forward network.
output_dim (int): Output dimension.
norm_layer (nn.Module): Normalization layer. Default is nn.LayerNorm.
Outputs:
A tensor with the shape of (batch_size, query_number, output_dim)
"""
def __init__(self, config: AriaConfig) -> None:
super().__init__()
self.patch_to_query_dict = config.projector_patch_to_query_dict
self.in_features = config.vision_config.hidden_size
self.num_heads = config.vision_config.num_attention_heads
self.kv_dim = config.vision_config.hidden_size
self.hidden_features = config.text_config.hidden_size
self.output_dim = config.text_config.hidden_size
self.query = nn.Parameter(
torch.empty(config.max_value_projector_patch_to_query_dict,
self.in_features))
self.cross_attn = AriaCrossAttention(config)
self.layer_norm = nn.LayerNorm(self.in_features)
self.feed_forward = AriaProjectorMLP(self.in_features,
self.hidden_features,
self.output_dim)
def forward(
self,
x: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
batch_size, num_patches = x.shape[0], x.shape[1]
if num_patches not in self.patch_to_query_dict:
raise KeyError(f"Number of patches {num_patches} not found in "
"patch_to_query_dict amongst possible values "
f"{self.patch_to_query_dict.keys()}.")
query_num = self.patch_to_query_dict[num_patches]
queries = self.query[:query_num].unsqueeze(0).repeat(batch_size, 1, 1)
if attn_mask is not None:
attn_mask = attn_mask.repeat_interleave(self.num_heads, 0)
attn_mask = attn_mask.unsqueeze(1).expand(-1, queries.size(1), -1)
attention_out = self.cross_attn(x, queries, attn_mask=attn_mask)
out = self.feed_forward(self.layer_norm(attention_out))
return out
class AriaFusedMoE(FusedMoE):
def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor,
shard_id: str) -> None:
# Override the weight_loader to handle the expert weights in the Aria
# model, which are already packed with experts, and merge the gate and
# up weights for each expert.
# Note: Loading expert weights with quantization is not supported
tp_rank = get_tensor_model_parallel_rank()
if shard_id == 'w13':
# the shape of loaded_weight is
# (num_experts, hidden_size, 2 * moe_intermediate_size)
if self.tp_size > 1:
up, gate = loaded_weight.chunk(2, dim=-1)
up_current_rank = up.chunk(self.tp_size, dim=-1)[tp_rank]
gate_current_rank = gate.chunk(self.tp_size, dim=-1)[tp_rank]
up_and_gate = torch.cat([up_current_rank, gate_current_rank],
dim=-1).transpose(1, 2)
param.data.copy_(up_and_gate)
else:
param.data.copy_(loaded_weight.transpose(1, 2))
elif shard_id == 'w2':
# the shape of loaded_weight is
# (num_experts, moe_intermediate_size, hidden_size)
if self.tp_size > 1:
down_current_rank = loaded_weight.chunk(self.tp_size,
dim=1)[tp_rank]
param.data.copy_(down_current_rank.transpose(1, 2))
else:
param.data.copy_(loaded_weight.transpose(1, 2))
class AriaTextMoELayer(nn.Module):
"""
Mixture of Experts (MoE) Layer for the AriaMoE model.
This layer implements the MoE mechanism, which routes input tokens to
different experts based on a routing algorithm, processes them through the
experts, and then combines the outputs.
"""
def __init__(
self,
config: AriaTextConfig,
quant_config: Optional[QuantizationConfig],
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.router_weight = nn.Parameter(
torch.empty(
(self.config.moe_num_experts, self.config.hidden_size)))
self.experts = AriaFusedMoE(
num_experts=config.moe_num_experts,
top_k=config.moe_topk,
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
quant_config=quant_config,
reduce_results=True,
prefix=f"{prefix}.experts",
)
self.shared_experts = LlamaMLP(
config.hidden_size,
config.intermediate_size * config.moe_num_shared_experts,
"silu",
quant_config=quant_config,
bias=config.mlp_bias,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
"""
Forward pass of the MoE Layer.
Args:
hidden_states (torch.Tensor): Input tensor of shape (batch_size,
sequence_length, hidden_size).
Returns:
torch.Tensor: Output tensor after passing through the MoE layer.
"""
router_output = torch.nn.functional.linear(hidden_states,
self.router_weight)
hidden_states_copy = hidden_states.clone()
# NOTE: hidden_states will be modified inplace by `FusedMoE`
sparse_expert_output = self.experts(hidden_states, router_output)
shared_expert_output = self.shared_experts(hidden_states_copy)
return sparse_expert_output + shared_expert_output
class AriaTextDecoderLayer(LlamaDecoderLayer):
"""
Custom Decoder Layer for the AriaMoE model which modifies the standard
`LlamaDecoderLayer` by replacing the traditional MLP with a Mixture of
Experts (MoE) Layer.
"""
def __init__(
self,
config: AriaTextConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__(config, cache_config, quant_config, prefix)
self.mlp = AriaTextMoELayer(config,
quant_config=quant_config,
prefix=f"{prefix}.mlp")
class AriaTextModel(LlamaModel, SupportsQuant):
"""
Custom LlamaModel for the AriaMoE model which modifies the standard
LlamaModel by replacing the `LlamaDecoderLayer` with `MoEDecoderLayer`.
"""
packed_modules_mapping = {
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
"gate_up_proj": ["gate_proj", "up_proj"],
"experts.w13_weight": ["experts.fc1.weight"],
"experts.w2_weight": ["experts.fc2.weight"],
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config,
prefix=prefix,
layer_type=AriaTextDecoderLayer)
# Adapted from LlamaModel.load_weights with the modification of adding
# the expert weights mapping to `stacked_params_mapping`
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
(".qkv_proj", ".q_proj", "q"),
(".qkv_proj", ".k_proj", "k"),
(".qkv_proj", ".v_proj", "v"),
(".gate_up_proj", ".gate_proj", 0),
(".gate_up_proj", ".up_proj", 1),
("experts.w13_weight", "experts.fc1.weight", 'w13'),
("experts.w2_weight", "experts.fc2.weight", 'w2'),
]
params_dict = dict(self.named_parameters())
loaded_params: Set[str] = set()
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if ("rotary_emb.cos_cached" in name
or "rotary_emb.sin_cached" in name):
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
if (self.quant_config is not None and
(scale_name := self.quant_config.get_cache_scale(name))):
# Loading kv cache quantization scales
param = params_dict[scale_name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
loaded_weight = (loaded_weight if loaded_weight.dim() == 0 else
loaded_weight[0])
weight_loader(param, loaded_weight)
loaded_params.add(scale_name)
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class AriaProcessingInfo(BaseProcessingInfo):
def get_hf_config(self):
return self.ctx.get_hf_config(AriaConfig)
def get_vision_config(self):
return self.get_hf_config().vision_config
def get_hf_processor(self, **kwargs: object):
return self.ctx.get_hf_processor(AriaProcessor, **kwargs)
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
return {"image": None}
def get_num_image_tokens(self) -> int:
hf_config = self.get_hf_config()
return max(hf_config.projector_patch_to_query_dict.values())
class AriaDummyInputsBuilder(BaseDummyInputsBuilder[AriaProcessingInfo]):
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
processor = self.info.get_hf_processor()
image_token: str = processor.tokenizer.image_token # type: ignore
return image_token * num_images
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
vision_config = self.info.get_vision_config()
max_image_size = vision_config.image_size
num_images = mm_counts.get("image", 0)
return {
"image":
self._get_dummy_images(width=max_image_size,
height=max_image_size,
num_images=num_images)
}
class AriaMultiModalProcessor(BaseMultiModalProcessor[AriaProcessingInfo]):
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
return dict(
pixel_values=MultiModalFieldConfig.batched("image"),
pixel_mask=MultiModalFieldConfig.batched("image"),
)
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]:
hf_config = self.info.get_hf_config()
image_token_id = hf_config.image_token_index
num_image_tokens = self.info.get_num_image_tokens()
return [
PromptReplacement(
modality="image",
target=[image_token_id],
replacement=[image_token_id] * num_image_tokens,
)
]
@MULTIMODAL_REGISTRY.register_processor(AriaMultiModalProcessor,
info=AriaProcessingInfo,
dummy_inputs=AriaDummyInputsBuilder)
class AriaForConditionalGeneration(nn.Module, SupportsMultiModal):
"""
Aria model for conditional generation tasks.
This model combines a vision tower, a multi-modal projector, and a language
model to perform tasks that involve both image and text inputs.
"""
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_prefix={
"language_model.model": "language_model",
"language_model.lm_head": "lm_head",
},
orig_to_new_suffix={
"router.weight": "router_weight",
},
)
def __init__(
self,
vllm_config: VllmConfig,
prefix: str = "",
):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.config = config
self.vision_tower = AriaVisionTransformer(
config.vision_config,
quant_config=quant_config,
prefix=f"{prefix}.vision_tower",
)
self.multi_modal_projector = AriaProjector(config)
self.vocab_size = config.text_config.vocab_size
self.language_model = AriaTextModel(
vllm_config=vllm_config.with_hf_config(config.text_config),
prefix=maybe_prefix(prefix, "language_model.model"),
)
self.pad_token_id = (self.config.pad_token_id
if self.config.pad_token_id is not None else -1)
self.unpadded_vocab_size = config.text_config.vocab_size
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.text_config.hidden_size,
org_num_embeddings=self.language_model.org_vocab_size,
quant_config=quant_config,
)
logit_scale = getattr(config, "logit_scale", 1.0)
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
self.vocab_size, logit_scale)
def _validate_image_sizes(
self, images: List[torch.Tensor]) -> List[torch.Tensor]:
if not all(img.shape == images[0].shape for img in images):
raise ValueError("All images must be the same size")
return images
def _parse_and_validate_image_input(
self, **kwargs: object) -> Optional[AriaImagePixelInputs]:
pixel_values = kwargs.pop("pixel_values", None)
pixel_mask = kwargs.pop("pixel_mask", None)
if pixel_values is None:
return None
if not isinstance(pixel_values, (torch.Tensor, list)):
raise ValueError("Incorrect type of pixel values. "
f"Got type: {type(pixel_values)}")
pixel_values = self._validate_image_sizes(pixel_values)
pixel_values = flatten_bn(pixel_values, concat=True)
if pixel_mask is not None:
if not isinstance(pixel_mask, (torch.Tensor, list)):
raise ValueError("Incorrect type of pixel mask. "
f"Got type: {type(pixel_mask)}")
pixel_mask = flatten_bn(pixel_mask, concat=True)
return AriaImagePixelInputs(
pixel_values=pixel_values,
pixel_mask=pixel_mask,
)
def _create_patch_attention_mask(
self, pixel_mask: Optional[torch.Tensor]) -> torch.Tensor:
if pixel_mask is None:
return None
patches_subgrid = pixel_mask.unfold(
dimension=1,
size=self.vision_tower.config.patch_size,
step=self.vision_tower.config.patch_size,
).unfold(
dimension=2,
size=self.vision_tower.config.patch_size,
step=self.vision_tower.config.patch_size,
)
return (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
def _process_image_input(
self, image_input: AriaImagePixelInputs
) -> Tuple[torch.Tensor, torch.Tensor]:
assert self.vision_tower is not None
pixel_values = image_input['pixel_values']
pixel_mask = image_input['pixel_mask']
patch_attention_mask = self._create_patch_attention_mask(pixel_mask)
image_outputs = self.vision_tower(
pixel_values=pixel_values,
patch_attention_mask=patch_attention_mask,
)
image_attn_mask = None
if patch_attention_mask is not None:
flattened_mask = patch_attention_mask.flatten(1)
image_attn_mask = torch.logical_not(flattened_mask)
return self.multi_modal_projector(image_outputs, image_attn_mask)
def get_language_model(self) -> torch.nn.Module:
return self.language_model
def get_multimodal_embeddings(
self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
image_input = self._parse_and_validate_image_input(**kwargs)
if image_input is None:
return None
multimodal_embeddings = self._process_image_input(image_input)
return multimodal_embeddings
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
) -> torch.Tensor:
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
if multimodal_embeddings is not None:
inputs_embeds = merge_multimodal_embeddings(
input_ids, inputs_embeds, multimodal_embeddings,
self.config.image_token_index)
return inputs_embeds
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs: object,
) -> Union[torch.Tensor, IntermediateTensors]:
if inputs_embeds is None:
multimodal_embeddings = self.get_multimodal_embeddings(**kwargs)
# always pass the input via `inputs_embeds`
# to make sure the computation graph is consistent
inputs_embeds = self.get_input_embeddings(input_ids,
multimodal_embeddings)
input_ids = None
hidden_states = self.language_model(
input_ids,
positions,
intermediate_tensors,
inputs_embeds=inputs_embeds,
)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
loader = AutoWeightsLoader(self)
loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)