mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-05 02:29:39 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
530 lines
19 KiB
Python
530 lines
19 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import time
|
|
from dataclasses import dataclass
|
|
from typing import Dict, Generic, List, MutableSequence, Optional
|
|
from typing import Sequence as GenericSequence
|
|
from typing import Union
|
|
|
|
import torch
|
|
from typing_extensions import TypeVar, deprecated
|
|
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.multimodal.inputs import MultiModalPlaceholderDict
|
|
from vllm.sampling_params import RequestOutputKind
|
|
from vllm.sequence import (PromptLogprobs, RequestMetrics, SampleLogprobs,
|
|
SequenceGroup, SequenceGroupBase, SequenceStatus)
|
|
|
|
|
|
@dataclass
|
|
class CompletionOutput:
|
|
"""The output data of one completion output of a request.
|
|
|
|
Args:
|
|
index: The index of the output in the request.
|
|
text: The generated output text.
|
|
token_ids: The token IDs of the generated output text.
|
|
cumulative_logprob: The cumulative log probability of the generated
|
|
output text.
|
|
logprobs: The log probabilities of the top probability words at each
|
|
position if the logprobs are requested.
|
|
finish_reason: The reason why the sequence is finished.
|
|
stop_reason: The stop string or token id that caused the completion
|
|
to stop, None if the completion finished for some other reason
|
|
including encountering the EOS token.
|
|
lora_request: The LoRA request that was used to generate the output.
|
|
"""
|
|
|
|
index: int
|
|
text: str
|
|
token_ids: GenericSequence[int]
|
|
cumulative_logprob: Optional[float]
|
|
logprobs: Optional[SampleLogprobs]
|
|
finish_reason: Optional[str] = None
|
|
stop_reason: Union[int, str, None] = None
|
|
lora_request: Optional[LoRARequest] = None
|
|
|
|
def finished(self) -> bool:
|
|
return self.finish_reason is not None
|
|
|
|
def __repr__(self) -> str:
|
|
return (f"CompletionOutput(index={self.index}, "
|
|
f"text={self.text!r}, "
|
|
f"token_ids={self.token_ids}, "
|
|
f"cumulative_logprob={self.cumulative_logprob}, "
|
|
f"logprobs={self.logprobs}, "
|
|
f"finish_reason={self.finish_reason}, "
|
|
f"stop_reason={self.stop_reason})")
|
|
|
|
|
|
@dataclass
|
|
class PoolingOutput:
|
|
"""The output data of one pooling output of a request.
|
|
|
|
Args:
|
|
data: The extracted hidden states.
|
|
"""
|
|
data: torch.Tensor
|
|
|
|
def __repr__(self) -> str:
|
|
return (f"PoolingOutput(data={self.data})")
|
|
|
|
def __eq__(self, other: object) -> bool:
|
|
return (isinstance(other, self.__class__) and bool(
|
|
(self.data == other.data).all()))
|
|
|
|
@property
|
|
@deprecated("`LLM.encode()` now stores raw outputs in the `data` "
|
|
"attribute. To return embeddings, use `LLM.embed()`. "
|
|
"To return class probabilities, use `LLM.classify()` "
|
|
"and access the `probs` attribute. ")
|
|
def embedding(self) -> list[float]:
|
|
return self.data.tolist()
|
|
|
|
|
|
class RequestOutput:
|
|
"""The output data of a completion request to the LLM.
|
|
|
|
Args:
|
|
request_id: The unique ID of the request.
|
|
prompt: The prompt string of the request.
|
|
For encoder/decoder models, this is the
|
|
decoder input prompt.
|
|
prompt_token_ids: The token IDs of the prompt.
|
|
For encoder/decoder models, this is the
|
|
decoder input prompt token ids.
|
|
prompt_logprobs: The log probabilities to return per prompt token.
|
|
outputs: The output sequences of the request.
|
|
finished: Whether the whole request is finished.
|
|
metrics: Metrics associated with the request.
|
|
lora_request: The LoRA request that was used to generate the output.
|
|
encoder_prompt: The encoder prompt string of the request.
|
|
None if decoder-only.
|
|
encoder_prompt_token_ids: The token IDs of the encoder prompt.
|
|
None if decoder-only.
|
|
num_cached_tokens: The number of tokens with prefix cache hit.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
request_id: str,
|
|
prompt: Optional[str],
|
|
prompt_token_ids: Optional[List[int]],
|
|
prompt_logprobs: Optional[PromptLogprobs],
|
|
outputs: List[CompletionOutput],
|
|
finished: bool,
|
|
metrics: Optional[RequestMetrics] = None,
|
|
lora_request: Optional[LoRARequest] = None,
|
|
encoder_prompt: Optional[str] = None,
|
|
encoder_prompt_token_ids: Optional[List[int]] = None,
|
|
num_cached_tokens: Optional[int] = None,
|
|
*,
|
|
multi_modal_placeholders: Optional[MultiModalPlaceholderDict] = None,
|
|
) -> None:
|
|
self.request_id = request_id
|
|
self.prompt = prompt
|
|
self.prompt_token_ids = prompt_token_ids
|
|
self.multi_modal_placeholders = multi_modal_placeholders or {}
|
|
self.prompt_logprobs = prompt_logprobs
|
|
self.outputs = outputs
|
|
self.finished = finished
|
|
self.metrics = metrics
|
|
self.lora_request = lora_request
|
|
self.encoder_prompt = encoder_prompt
|
|
self.encoder_prompt_token_ids = encoder_prompt_token_ids
|
|
self.num_cached_tokens = num_cached_tokens
|
|
|
|
@classmethod
|
|
def new(
|
|
cls,
|
|
request_id: str,
|
|
prompt: Optional[str],
|
|
prompt_token_ids: Optional[List[int]],
|
|
text: str,
|
|
token_ids: List[int],
|
|
finished: bool = False,
|
|
) -> "RequestOutput":
|
|
"""Initialize a new RequestOutput object."""
|
|
|
|
# TODO: Support `n` > 1.
|
|
completion_output = CompletionOutput(
|
|
index=0,
|
|
text=text,
|
|
token_ids=token_ids,
|
|
cumulative_logprob=None,
|
|
logprobs=None, # TODO
|
|
)
|
|
|
|
return RequestOutput(
|
|
request_id=request_id,
|
|
prompt=prompt,
|
|
prompt_token_ids=prompt_token_ids,
|
|
prompt_logprobs=None, # TODO
|
|
outputs=[completion_output],
|
|
finished=finished,
|
|
)
|
|
|
|
def add(self, next_output: "RequestOutput") -> None:
|
|
"""Merge subsequent RequestOutput into this one"""
|
|
|
|
self.prompt = next_output.prompt
|
|
self.prompt_token_ids = next_output.prompt_token_ids
|
|
self.prompt_logprobs = next_output.prompt_logprobs
|
|
self.finished |= next_output.finished
|
|
|
|
#TODO assuming n == 1 for now
|
|
completion = self.outputs[0]
|
|
next_completion = next_output.outputs[0]
|
|
completion.text += next_completion.text
|
|
if not isinstance(completion.token_ids, MutableSequence):
|
|
completion.token_ids = list(completion.token_ids)
|
|
completion.token_ids.extend(next_completion.token_ids)
|
|
if next_completion.logprobs:
|
|
assert completion.logprobs is not None
|
|
completion.logprobs.extend(next_completion.logprobs)
|
|
completion.cumulative_logprob = next_completion.cumulative_logprob
|
|
|
|
@classmethod
|
|
def from_seq_group(
|
|
cls, seq_group: SequenceGroup, use_cache: bool,
|
|
seq_id_to_seq_group: Dict[str, SequenceGroupBase]
|
|
) -> Optional["RequestOutput"]:
|
|
finished = seq_group.is_finished()
|
|
|
|
if seq_group.request_id in seq_id_to_seq_group:
|
|
group: SequenceGroupBase = seq_id_to_seq_group[
|
|
seq_group.request_id]
|
|
assembled_seq_group = group.maybe_assemble_group(seq_group)
|
|
if finished:
|
|
group.finish_seq(seq_group)
|
|
if assembled_seq_group is None:
|
|
return None
|
|
return cls.from_seq_group(assembled_seq_group, use_cache,
|
|
seq_id_to_seq_group)
|
|
|
|
sampling_params = seq_group.sampling_params
|
|
if sampling_params is None:
|
|
raise ValueError(
|
|
"Sampling parameters are missing for a CompletionRequest.")
|
|
|
|
if sampling_params.output_kind == RequestOutputKind.FINAL_ONLY and (
|
|
not finished):
|
|
return None
|
|
|
|
# Init cache (if needed)
|
|
if use_cache and seq_group.cached_request_output is None:
|
|
seq_group.cached_request_output = RequestOutput( # type: ignore
|
|
request_id="",
|
|
prompt=None,
|
|
prompt_token_ids=[],
|
|
prompt_logprobs=None,
|
|
outputs=[],
|
|
finished=False)
|
|
|
|
top_n_seqs = seq_group.get_seqs()
|
|
|
|
# Create the outputs.
|
|
# NOTE: We need omit logprobs here explicitly because the sequence
|
|
# always has the logprobs of the sampled tokens even if the
|
|
# logprobs are not requested.
|
|
include_logprobs = sampling_params.logprobs is not None
|
|
text_buffer_length = sampling_params.output_text_buffer_length
|
|
delta = sampling_params.output_kind == RequestOutputKind.DELTA
|
|
|
|
outputs = []
|
|
include_prompt = True
|
|
# num_cached_tokens should be the same for all the sequences
|
|
num_cached_tokens = None
|
|
for i, seq in enumerate(top_n_seqs):
|
|
output_text = seq.get_output_text_to_return(
|
|
text_buffer_length, delta)
|
|
|
|
output_token_ids = seq.get_output_token_ids_to_return(delta)
|
|
num_output_tokens = 1 if isinstance(output_token_ids,
|
|
int) else len(output_token_ids)
|
|
num_cached_tokens = seq.data.get_num_cached_tokens()
|
|
|
|
output_logprobs = seq.output_logprobs if include_logprobs else None
|
|
|
|
if delta:
|
|
# Slice logprobs delta if applicable
|
|
if output_logprobs:
|
|
output_logprobs = output_logprobs[-num_output_tokens:]
|
|
# Don't include prompt if this is after the first output
|
|
# containing decode token ids
|
|
if include_prompt and seq.get_output_len() > num_output_tokens:
|
|
include_prompt = False
|
|
|
|
if use_cache:
|
|
# Get cached output object
|
|
cached_outputs = seq_group.cached_request_output.outputs # type: ignore
|
|
if i >= len(cached_outputs):
|
|
cached_outputs.append(
|
|
CompletionOutput(index=i,
|
|
text="",
|
|
token_ids=[],
|
|
cumulative_logprob=None,
|
|
logprobs=None,
|
|
finish_reason=None,
|
|
stop_reason=None))
|
|
output = cached_outputs[i]
|
|
|
|
# Init cached output object
|
|
assert output.index == i
|
|
output.text = output_text
|
|
|
|
if isinstance(output_token_ids, int):
|
|
output.token_ids.clear()
|
|
output.token_ids.append(output_token_ids)
|
|
else:
|
|
output.token_ids = output_token_ids
|
|
|
|
output.cumulative_logprob = seq.get_cumulative_logprob() \
|
|
if include_logprobs else None
|
|
output.logprobs = output_logprobs
|
|
output.finish_reason = SequenceStatus.get_finished_reason(
|
|
seq.status)
|
|
output.stop_reason = seq.stop_reason
|
|
|
|
else:
|
|
output = CompletionOutput(
|
|
top_n_seqs.index(seq), output_text, [output_token_ids]
|
|
if isinstance(output_token_ids, int) else output_token_ids,
|
|
seq.get_cumulative_logprob() if include_logprobs else None,
|
|
output_logprobs,
|
|
SequenceStatus.get_finished_reason(seq.status),
|
|
seq.stop_reason)
|
|
|
|
outputs.append(output)
|
|
|
|
# Every sequence in the sequence group should have the same prompt.
|
|
if include_prompt:
|
|
prompt = seq_group.prompt
|
|
prompt_token_ids = seq_group.prompt_token_ids
|
|
encoder_prompt = seq_group.encoder_prompt
|
|
encoder_prompt_token_ids = seq_group.encoder_prompt_token_ids
|
|
prompt_logprobs = seq_group.prompt_logprobs
|
|
else:
|
|
prompt = None
|
|
prompt_token_ids = None
|
|
encoder_prompt = None
|
|
encoder_prompt_token_ids = None
|
|
prompt_logprobs = None
|
|
finished_time = time.time() if finished else None
|
|
seq_group.set_finished_time(finished_time)
|
|
|
|
init_kwargs = {
|
|
"request_id": seq_group.request_id,
|
|
"prompt": prompt,
|
|
"prompt_token_ids": prompt_token_ids,
|
|
"prompt_logprobs": prompt_logprobs,
|
|
"outputs": outputs,
|
|
"finished": finished,
|
|
"metrics": seq_group.metrics,
|
|
"lora_request": seq_group.lora_request,
|
|
"encoder_prompt": encoder_prompt,
|
|
"encoder_prompt_token_ids": encoder_prompt_token_ids,
|
|
"num_cached_tokens": num_cached_tokens,
|
|
"multi_modal_placeholders": seq_group.multi_modal_placeholders
|
|
}
|
|
|
|
if use_cache:
|
|
request_output = seq_group.cached_request_output
|
|
request_output.__init__(**init_kwargs) # type: ignore
|
|
else:
|
|
request_output = cls(**init_kwargs) # type: ignore
|
|
|
|
return request_output
|
|
|
|
def __repr__(self) -> str:
|
|
return (f"RequestOutput(request_id={self.request_id}, "
|
|
f"prompt={self.prompt!r}, "
|
|
f"prompt_token_ids={self.prompt_token_ids}, "
|
|
f"encoder_prompt={self.encoder_prompt!r}, "
|
|
f"encoder_prompt_token_ids={self.encoder_prompt_token_ids}, "
|
|
f"prompt_logprobs={self.prompt_logprobs}, "
|
|
f"outputs={self.outputs}, "
|
|
f"finished={self.finished}, "
|
|
f"metrics={self.metrics}, "
|
|
f"lora_request={self.lora_request}, "
|
|
f"num_cached_tokens={self.num_cached_tokens}, "
|
|
f"multi_modal_placeholders={self.multi_modal_placeholders})")
|
|
|
|
|
|
_O = TypeVar("_O", default=PoolingOutput)
|
|
|
|
|
|
class PoolingRequestOutput(Generic[_O]):
|
|
"""
|
|
The output data of a pooling request to the LLM.
|
|
|
|
Args:
|
|
request_id (str): A unique identifier for the pooling request.
|
|
outputs (PoolingOutput): The pooling results for the given input.
|
|
prompt_token_ids (List[int]): A list of token IDs used in the prompt.
|
|
finished (bool): A flag indicating whether the pooling is completed.
|
|
"""
|
|
|
|
def __init__(self, request_id: str, outputs: _O,
|
|
prompt_token_ids: List[int], finished: bool):
|
|
self.request_id = request_id
|
|
self.prompt_token_ids = prompt_token_ids
|
|
self.finished = finished
|
|
self.outputs = outputs
|
|
|
|
@staticmethod
|
|
def from_seq_group(seq_group: SequenceGroup) -> "PoolingRequestOutput":
|
|
pooled_data = seq_group.pooled_data
|
|
assert pooled_data is not None
|
|
|
|
data = pooled_data.to(dtype=torch.float32, device="cpu")
|
|
output = PoolingOutput(data)
|
|
prompt_token_ids = seq_group.prompt_token_ids
|
|
finished = seq_group.is_finished()
|
|
|
|
return PoolingRequestOutput(seq_group.request_id, output,
|
|
prompt_token_ids, finished)
|
|
|
|
def __repr__(self):
|
|
"""
|
|
Returns a string representation of an PoolingRequestOutput instance.
|
|
|
|
The representation includes the request_id and the number of outputs,
|
|
providing a quick overview of the pooling request's results.
|
|
|
|
Returns:
|
|
str: A string representation of the PoolingRequestOutput instance.
|
|
"""
|
|
return (f"{type(self).__name__}(request_id={self.request_id!r}, "
|
|
f"outputs={self.outputs!r}, "
|
|
f"prompt_token_ids={self.prompt_token_ids}, "
|
|
f"finished={self.finished})")
|
|
|
|
|
|
class RequestOutputFactory:
|
|
|
|
@staticmethod
|
|
def create(seq_group: SequenceGroup,
|
|
seq_id_to_seq_group: Dict[str, SequenceGroupBase],
|
|
use_cache: bool = False):
|
|
if seq_group.pooled_data is not None:
|
|
return PoolingRequestOutput.from_seq_group(seq_group)
|
|
else:
|
|
return RequestOutput.from_seq_group(seq_group, use_cache,
|
|
seq_id_to_seq_group)
|
|
|
|
|
|
@dataclass
|
|
class EmbeddingOutput:
|
|
"""The output data of one embedding output of a request.
|
|
|
|
Args:
|
|
embedding: The embedding vector, which is a list of floats.
|
|
Its length depends on the hidden dimension of the model.
|
|
"""
|
|
embedding: list[float]
|
|
|
|
@staticmethod
|
|
def from_base(pooling_output: PoolingOutput):
|
|
pooled_data = pooling_output.data
|
|
if pooled_data.ndim != 1:
|
|
raise ValueError("pooled_data should be a 1-D embedding vector")
|
|
|
|
return EmbeddingOutput(pooled_data.tolist())
|
|
|
|
@property
|
|
def hidden_size(self) -> int:
|
|
return len(self.embedding)
|
|
|
|
def __repr__(self) -> str:
|
|
return f"EmbeddingOutput(hidden_size={self.hidden_size})"
|
|
|
|
|
|
class EmbeddingRequestOutput(PoolingRequestOutput[EmbeddingOutput]):
|
|
|
|
@staticmethod
|
|
def from_base(request_output: PoolingRequestOutput):
|
|
return EmbeddingRequestOutput(
|
|
request_id=request_output.request_id,
|
|
outputs=EmbeddingOutput.from_base(request_output.outputs),
|
|
prompt_token_ids=request_output.prompt_token_ids,
|
|
finished=request_output.finished,
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class ClassificationOutput:
|
|
"""The output data of one classification output of a request.
|
|
|
|
Args:
|
|
probs: The probability vector, which is a list of floats.
|
|
Its length depends on the number of classes.
|
|
"""
|
|
probs: list[float]
|
|
|
|
@staticmethod
|
|
def from_base(pooling_output: PoolingOutput):
|
|
pooled_data = pooling_output.data
|
|
if pooled_data.ndim != 1:
|
|
raise ValueError("pooled_data should be a 1-D probability vector")
|
|
|
|
return ClassificationOutput(pooled_data.tolist())
|
|
|
|
@property
|
|
def num_classes(self) -> int:
|
|
return len(self.probs)
|
|
|
|
def __repr__(self) -> str:
|
|
return f"ClassificationOutput(num_classes={self.num_classes})"
|
|
|
|
|
|
class ClassificationRequestOutput(PoolingRequestOutput[ClassificationOutput]):
|
|
|
|
@staticmethod
|
|
def from_base(request_output: PoolingRequestOutput):
|
|
return ClassificationRequestOutput(
|
|
request_id=request_output.request_id,
|
|
outputs=ClassificationOutput.from_base(request_output.outputs),
|
|
prompt_token_ids=request_output.prompt_token_ids,
|
|
finished=request_output.finished,
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class ScoringOutput:
|
|
"""The output data of one scoring output of a request.
|
|
|
|
Args:
|
|
score: The similarity score, which is a scalar value.
|
|
"""
|
|
score: float
|
|
|
|
@staticmethod
|
|
def from_base(pooling_output: PoolingOutput):
|
|
pooled_data = pooling_output.data
|
|
if pooled_data.ndim != 0:
|
|
raise ValueError("pooled_data should be a scalar score")
|
|
|
|
return ScoringOutput(pooled_data.item())
|
|
|
|
def __repr__(self) -> str:
|
|
return f"ScoringOutput(score={self.score})"
|
|
|
|
@property
|
|
@deprecated("`LLM.score()` now returns scalar scores. "
|
|
"Please access it via the `score` attribute. ")
|
|
def embedding(self) -> list[float]:
|
|
return [self.score]
|
|
|
|
|
|
class ScoringRequestOutput(PoolingRequestOutput[ScoringOutput]):
|
|
|
|
@staticmethod
|
|
def from_base(request_output: PoolingRequestOutput):
|
|
return ScoringRequestOutput(
|
|
request_id=request_output.request_id,
|
|
outputs=ScoringOutput.from_base(request_output.outputs),
|
|
prompt_token_ids=request_output.prompt_token_ids,
|
|
finished=request_output.finished,
|
|
)
|