mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-30 04:25:17 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
204 lines
8.5 KiB
Python
204 lines
8.5 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import dataclasses
|
|
from typing import Any, Dict, List, Optional, Tuple, Type, Union
|
|
|
|
import torch
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.distributed import get_pp_group
|
|
from vllm.forward_context import set_forward_context
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.pooling_metadata import PoolingMetadata
|
|
from vllm.multimodal import MultiModalKwargs
|
|
from vllm.pooling_params import PoolingParams
|
|
from vllm.sequence import (IntermediateTensors, PoolerOutput, SequenceData,
|
|
SequenceGroupMetadata)
|
|
from vllm.worker.model_runner import (GPUModelRunnerBase, ModelInputForGPU,
|
|
ModelInputForGPUBuilder)
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
@dataclasses.dataclass(frozen=True)
|
|
class ModelInputForGPUWithPoolingMetadata(ModelInputForGPU):
|
|
"""
|
|
Used by the PoolingModelRunner.
|
|
"""
|
|
pooling_metadata: Optional["PoolingMetadata"] = None
|
|
|
|
|
|
class PoolingModelRunner(
|
|
GPUModelRunnerBase[ModelInputForGPUWithPoolingMetadata]):
|
|
_model_input_cls: Type[ModelInputForGPUWithPoolingMetadata] = (
|
|
ModelInputForGPUWithPoolingMetadata)
|
|
_builder_cls: Type[ModelInputForGPUBuilder] = ModelInputForGPUBuilder
|
|
|
|
def __init__(
|
|
self,
|
|
vllm_config: VllmConfig,
|
|
kv_cache_dtype: Optional[str] = "auto",
|
|
is_driver_worker: bool = False,
|
|
):
|
|
super().__init__(vllm_config=vllm_config,
|
|
kv_cache_dtype=kv_cache_dtype,
|
|
is_driver_worker=is_driver_worker)
|
|
|
|
@torch.inference_mode()
|
|
def execute_model(
|
|
self,
|
|
model_input: ModelInputForGPUWithPoolingMetadata,
|
|
kv_caches: List[torch.Tensor],
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
num_steps: int = 1,
|
|
) -> Optional[Union[List[PoolerOutput], IntermediateTensors]]:
|
|
if num_steps > 1:
|
|
raise ValueError(
|
|
"PoolingModelRunner does not support multi-step execution.")
|
|
|
|
if self.lora_config:
|
|
assert model_input.lora_requests is not None
|
|
assert model_input.lora_mapping is not None
|
|
self.set_active_loras(model_input.lora_requests,
|
|
model_input.lora_mapping)
|
|
|
|
if self.prompt_adapter_config:
|
|
assert model_input.prompt_adapter_requests is not None
|
|
assert model_input.prompt_adapter_mapping is not None
|
|
self.set_active_prompt_adapters(
|
|
model_input.prompt_adapter_requests,
|
|
model_input.prompt_adapter_mapping)
|
|
|
|
# Currently cuda graph is only supported by the decode phase.
|
|
assert model_input.attn_metadata is not None
|
|
prefill_meta = model_input.attn_metadata.prefill_metadata
|
|
decode_meta = model_input.attn_metadata.decode_metadata
|
|
virtual_engine = model_input.virtual_engine
|
|
if prefill_meta is None and decode_meta.use_cuda_graph:
|
|
assert model_input.input_tokens is not None
|
|
graph_batch_size = model_input.input_tokens.shape[0]
|
|
model_executable = self.graph_runners[virtual_engine][
|
|
graph_batch_size]
|
|
else:
|
|
model_executable = self.model
|
|
|
|
num_layers = self.model_config.get_num_layers(self.parallel_config)
|
|
# use an empty tensor instead of `None`` to force Dynamo to pass
|
|
# it by reference, rather by specializing on the value ``None``.
|
|
# the `dtype` argument does not matter, and we use `float32` as
|
|
# a placeholder (it has wide hardware support).
|
|
kv_caches = [
|
|
torch.tensor([], dtype=torch.float32, device=self.device)
|
|
for _ in range(num_layers)
|
|
]
|
|
|
|
multi_modal_kwargs = model_input.multi_modal_kwargs or {}
|
|
seqlen_agnostic_kwargs = {
|
|
"finished_requests_ids": model_input.finished_requests_ids,
|
|
"request_ids_to_seq_ids": model_input.request_ids_to_seq_ids,
|
|
} if self.has_inner_state else {}
|
|
if (self.observability_config is not None
|
|
and self.observability_config.collect_model_forward_time):
|
|
model_forward_start = torch.cuda.Event(enable_timing=True)
|
|
model_forward_end = torch.cuda.Event(enable_timing=True)
|
|
model_forward_start.record()
|
|
|
|
cross_enc_kwargs = {}
|
|
if model_input.token_types is not None:
|
|
cross_enc_kwargs["token_type_ids"] = model_input.token_types
|
|
|
|
with set_forward_context(model_input.attn_metadata, self.vllm_config,
|
|
virtual_engine):
|
|
hidden_or_intermediate_states = model_executable(
|
|
input_ids=model_input.input_tokens,
|
|
positions=model_input.input_positions,
|
|
kv_caches=kv_caches,
|
|
attn_metadata=model_input.attn_metadata,
|
|
intermediate_tensors=intermediate_tensors,
|
|
**MultiModalKwargs.as_kwargs(multi_modal_kwargs,
|
|
device=self.device),
|
|
**cross_enc_kwargs,
|
|
**seqlen_agnostic_kwargs)
|
|
|
|
if (self.observability_config is not None
|
|
and self.observability_config.collect_model_forward_time):
|
|
model_forward_end.record()
|
|
|
|
# Only perform pooling in the last pipeline stage.
|
|
if not get_pp_group().is_last_rank:
|
|
if (self.is_driver_worker
|
|
and hidden_or_intermediate_states is not None
|
|
and isinstance(hidden_or_intermediate_states,
|
|
IntermediateTensors)
|
|
and self.observability_config is not None
|
|
and self.observability_config.collect_model_forward_time):
|
|
model_forward_end.synchronize()
|
|
model_forward_time = model_forward_start.elapsed_time(
|
|
model_forward_end)
|
|
orig_model_forward_time = 0.0
|
|
if intermediate_tensors is not None:
|
|
orig_model_forward_time = intermediate_tensors.tensors.get(
|
|
"model_forward_time", torch.tensor(0.0)).item()
|
|
hidden_or_intermediate_states.tensors["model_forward_time"] = (
|
|
torch.tensor(model_forward_time + orig_model_forward_time))
|
|
return hidden_or_intermediate_states
|
|
|
|
# Only perform pooling in the driver worker.
|
|
if not self.is_driver_worker:
|
|
return []
|
|
|
|
return [
|
|
self.model.pooler(hidden_states=hidden_or_intermediate_states,
|
|
pooling_metadata=model_input.pooling_metadata)
|
|
]
|
|
|
|
def make_model_input_from_broadcasted_tensor_dict(
|
|
self,
|
|
tensor_dict: Dict[str,
|
|
Any]) -> ModelInputForGPUWithPoolingMetadata:
|
|
return ModelInputForGPUWithPoolingMetadata.from_broadcasted_tensor_dict(
|
|
tensor_dict,
|
|
attn_backend=self.attn_backend,
|
|
)
|
|
|
|
def prepare_model_input(
|
|
self,
|
|
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
|
|
virtual_engine: int = 0,
|
|
finished_requests_ids: Optional[List[str]] = None
|
|
) -> ModelInputForGPUWithPoolingMetadata:
|
|
assert seq_group_metadata_list is not None
|
|
model_input = self._prepare_model_input_tensors(
|
|
seq_group_metadata_list, finished_requests_ids)
|
|
# Prepare PoolingMetadata.
|
|
assert model_input.seq_lens is not None
|
|
pooling_metadata = self._prepare_pooling(seq_group_metadata_list,
|
|
model_input.seq_lens)
|
|
|
|
return dataclasses.replace(model_input,
|
|
pooling_metadata=pooling_metadata)
|
|
|
|
def _prepare_pooling(
|
|
self,
|
|
seq_group_metadata_list: List[SequenceGroupMetadata],
|
|
prompt_lens: List[int],
|
|
) -> PoolingMetadata:
|
|
"""Prepare PoolingMetadata for the sequence group metadata list."""
|
|
seq_groups: List[Tuple[List[int], PoolingParams]] = []
|
|
for i, seq_group_metadata in enumerate(seq_group_metadata_list):
|
|
seq_ids = list(seq_group_metadata.seq_data.keys())
|
|
pooling_params = seq_group_metadata.pooling_params
|
|
seq_groups.append((seq_ids, pooling_params))
|
|
|
|
seq_data: Dict[int, SequenceData] = {}
|
|
for seq_group_metadata in seq_group_metadata_list:
|
|
seq_data.update(seq_group_metadata.seq_data)
|
|
|
|
pooling_metadata = PoolingMetadata(
|
|
seq_groups=seq_groups,
|
|
seq_data=seq_data,
|
|
prompt_lens=prompt_lens,
|
|
)
|
|
|
|
return pooling_metadata
|