vllm/vllm/model_executor/models/qwen2_audio.py
Cyrus Leung b024a42e93
[Core] Move multimodal placeholder from chat utils to model definition (#20355)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-07-03 08:18:30 +00:00

421 lines
17 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Copyright 2024 The Qwen team.
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Qwen2-Audio model compatible with HuggingFace weights."""
from collections.abc import Iterable, Mapping, Sequence
from typing import Any, Optional, TypedDict, Union
import torch
import torch.nn as nn
from transformers import BatchFeature
from transformers.models.qwen2_audio import (Qwen2AudioConfig,
Qwen2AudioEncoder,
Qwen2AudioProcessor)
from transformers.models.whisper import WhisperFeatureExtractor
from vllm.config import VllmConfig
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs)
from vllm.multimodal.parse import (AudioProcessorItems, MultiModalDataItems,
MultiModalDataParser)
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate, PromptUpdateDetails)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
from .utils import (AutoWeightsLoader, init_vllm_registered_model,
maybe_prefix, merge_multimodal_embeddings)
# # === Audio Inputs === #
class Qwen2AudioInputs(TypedDict):
input_features: torch.Tensor
"""Shape: `(num_audios, num_mel_bins, 3000)`"""
feature_attention_mask: torch.Tensor
"""Shape: `(num_audios, 3000)`"""
# === Audio Encoder === #
class Qwen2AudioMultiModalProjector(nn.Module):
def __init__(self, audio_hidden_size: int, text_hidden_size: int):
super().__init__()
self.linear = nn.Linear(audio_hidden_size, text_hidden_size, bias=True)
def forward(self, audio_features):
hidden_states = self.linear(audio_features)
return hidden_states
# From Qwen2AudioEncoder._get_feat_extract_output_lengths
def _get_feat_extract_output_lengths(input_lengths: torch.Tensor):
feat_lengths = (input_lengths - 1) // 2 + 1
output_lengths = (feat_lengths - 2) // 2 + 1
return feat_lengths, output_lengths
class Qwen2AudioProcessingInfo(BaseProcessingInfo):
def get_hf_config(self):
return self.ctx.get_hf_config(Qwen2AudioConfig)
def get_hf_processor(
self,
*,
# Ignored in initialization
sampling_rate: Optional[int] = None,
**kwargs: object,
) -> Qwen2AudioProcessor:
return self.ctx.get_hf_processor(Qwen2AudioProcessor, **kwargs)
def get_feature_extractor(
self,
*,
# Ignored in initialization
sampling_rate: Optional[int] = None,
) -> WhisperFeatureExtractor:
hf_processor = self.get_hf_processor(sampling_rate=sampling_rate)
feature_extractor = hf_processor.feature_extractor # type: ignore
assert isinstance(feature_extractor, WhisperFeatureExtractor)
return feature_extractor
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
return {"audio": None}
class Qwen2AudioDummyInputsBuilder(
BaseDummyInputsBuilder[Qwen2AudioProcessingInfo]):
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_audios = mm_counts.get("audio", 0)
hf_processor = self.info.get_hf_processor()
audio_token = hf_processor.audio_token
return audio_token * num_audios
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
feature_extractor = self.info.get_feature_extractor()
sampling_rate = feature_extractor.sampling_rate
audio_len = feature_extractor.chunk_length * sampling_rate
num_audios = mm_counts.get("audio", 0)
return {
"audio":
self._get_dummy_audios(length=audio_len, num_audios=num_audios)
}
class Qwen2AudioMultiModalProcessor(
BaseMultiModalProcessor[Qwen2AudioProcessingInfo]):
def _get_data_parser(self) -> MultiModalDataParser:
feature_extractor = self.info.get_feature_extractor()
return MultiModalDataParser(target_sr=feature_extractor.sampling_rate)
def _call_hf_processor(
self,
prompt: str,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, Any],
tok_kwargs: Mapping[str, object],
) -> BatchFeature:
# NOTE - we rename audios -> audio in mm data because transformers has
# deprecated audios for the qwen2audio processor and will remove
# support for it in transformers 4.54.
audios = mm_data.pop("audios", [])
if audios:
mm_data["audio"] = audios
# Text-only input not supported in composite processor
if not mm_data.get("audio", []):
prompt_ids = self.info.get_tokenizer().encode(prompt)
prompt_ids = self._apply_hf_processor_tokens_only(prompt_ids)
return BatchFeature(dict(input_ids=[prompt_ids]), tensor_type="pt")
feature_extractor = self.info.get_feature_extractor(**mm_kwargs)
mm_kwargs = dict(
**mm_kwargs,
sampling_rate=feature_extractor.sampling_rate,
)
return super()._call_hf_processor(
prompt=prompt,
mm_data=mm_data,
mm_kwargs=mm_kwargs,
tok_kwargs=tok_kwargs,
)
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
return dict(
input_features=MultiModalFieldConfig.batched("audio"),
feature_attention_mask=MultiModalFieldConfig.batched("audio"),
)
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]:
processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
tokenizer = self.info.get_tokenizer()
vocab = tokenizer.get_vocab()
# Use getattr with default to be compatible with transformers<4.48
audio_token = getattr(processor, "audio_token", "<|AUDIO|>")
audio_bos_token = getattr(processor, "audio_bos_token",
"<|audio_bos|>")
audio_eos_token = getattr(processor, "audio_eos_token",
"<|audio_eos|>")
audio_token_id = vocab[audio_token]
audio_bos_id = vocab[audio_bos_token]
audio_eos_id = vocab[audio_eos_token]
feature_attention_mask = out_mm_kwargs.get("feature_attention_mask")
if feature_attention_mask is None:
audio_output_lengths = []
else:
assert isinstance(feature_attention_mask, torch.Tensor)
_, audio_output_lens = _get_feat_extract_output_lengths(
feature_attention_mask.sum(-1))
audio_output_lengths = audio_output_lens.tolist()
def get_replacement_qwen2_audio(item_idx: int):
num_features = audio_output_lengths[item_idx]
if num_features == 0:
audios = mm_items.get_items("audio", AudioProcessorItems)
audio_len = audios.get_audio_length(item_idx)
raise ValueError(f"The audio (len={audio_len}) is too short "
"to be represented inside the model")
audio_tokens = [audio_token_id] * num_features
return PromptUpdateDetails.select_token_id(
[audio_bos_id] + audio_tokens + [audio_eos_id],
embed_token_id=audio_token_id,
)
return [
PromptReplacement(
modality="audio",
target=audio_token,
replacement=get_replacement_qwen2_audio,
)
]
@MULTIMODAL_REGISTRY.register_processor(
Qwen2AudioMultiModalProcessor,
info=Qwen2AudioProcessingInfo,
dummy_inputs=Qwen2AudioDummyInputsBuilder)
class Qwen2AudioForConditionalGeneration(nn.Module, SupportsMultiModal,
SupportsPP):
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
if modality.startswith("audio"):
return f"Audio {i}: <|audio_bos|><|AUDIO|><|audio_eos|>"
raise ValueError("Only audio modality is supported")
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
multimodal_config = vllm_config.model_config.multimodal_config
self.config = config
self.multimodal_config = multimodal_config
self.audio_tower = Qwen2AudioEncoder(config.audio_config)
self.multi_modal_projector = Qwen2AudioMultiModalProjector(
config.audio_config.d_model, config.text_config.hidden_size)
self.quant_config = quant_config
self.language_model = init_vllm_registered_model(
vllm_config=vllm_config,
hf_config=config.text_config,
prefix=maybe_prefix(prefix, "language_model"),
architectures=["Qwen2ForCausalLM"],
)
self.make_empty_intermediate_tensors = (
self.language_model.make_empty_intermediate_tensors)
def _validate_and_reshape_mm_tensor(self, mm_input: object,
name: str) -> torch.Tensor:
if not isinstance(mm_input, (torch.Tensor, list)):
raise ValueError(f"Incorrect type of {name}. "
f"Got type: {type(mm_input)}")
if isinstance(mm_input, torch.Tensor):
return torch.concat(list(mm_input))
else:
return torch.concat(mm_input)
def _parse_and_validate_audio_input(
self, **kwargs: object) -> Optional[Qwen2AudioInputs]:
input_features = kwargs.pop('input_features', None)
feature_attention_mask = kwargs.pop('feature_attention_mask', None)
if input_features is None:
return None
input_features = self._validate_and_reshape_mm_tensor(
input_features, 'input_features')
feature_attention_mask = self._validate_and_reshape_mm_tensor(
feature_attention_mask, 'feature_attention_mask')
if not isinstance(input_features, (torch.Tensor, list)):
raise ValueError("Incorrect type of audio input features. "
f"Got type: {type(input_features)}")
return Qwen2AudioInputs(input_features=input_features,
feature_attention_mask=feature_attention_mask)
def _process_audio_input(self,
audio_input: Qwen2AudioInputs) -> torch.Tensor:
input_features = audio_input["input_features"]
feature_attention_mask = audio_input["feature_attention_mask"]
audio_feat_lengths, audio_output_lengths = (
self.audio_tower._get_feat_extract_output_lengths(
feature_attention_mask.sum(-1)))
batch_size, _, max_mel_seq_len = input_features.shape
max_seq_len = (max_mel_seq_len - 2) // 2 + 1
# Create a sequence tensor of shape (batch_size, max_seq_len)
seq_range = (torch.arange(
0,
max_seq_len,
dtype=audio_feat_lengths.dtype,
device=audio_feat_lengths.device).unsqueeze(0).expand(
batch_size, max_seq_len))
lengths_expand = audio_feat_lengths.unsqueeze(-1).expand(
batch_size, max_seq_len)
# Create mask
padding_mask = seq_range >= lengths_expand
audio_attention_mask_ = padding_mask.view(
batch_size, 1, 1, max_seq_len).expand(batch_size, 1, max_seq_len,
max_seq_len)
audio_attention_mask = audio_attention_mask_.to(
dtype=self.audio_tower.conv1.weight.dtype,
device=self.audio_tower.conv1.weight.device)
audio_attention_mask[audio_attention_mask_] = float("-inf")
audio_outputs = self.audio_tower(input_features,
attention_mask=audio_attention_mask)
selected_audio_feature = audio_outputs.last_hidden_state
audio_features = self.multi_modal_projector(selected_audio_feature)
num_audios, max_audio_tokens, embed_dim = audio_features.shape
audio_output_lengths = audio_output_lengths.unsqueeze(1)
audio_features_mask = torch.arange(max_audio_tokens).expand(
num_audios, max_audio_tokens).to(
audio_output_lengths.device) < audio_output_lengths
masked_audio_features = audio_features[audio_features_mask].view(
-1, embed_dim)
# Split to tuple of embeddings for individual audio input.
return torch.split(masked_audio_features,
audio_output_lengths.flatten().tolist())
def get_language_model(self) -> torch.nn.Module:
return self.language_model
def get_multimodal_embeddings(self,
**kwargs: object) -> MultiModalEmbeddings:
audio_input = self._parse_and_validate_audio_input(**kwargs)
if audio_input is None:
return []
masked_audio_features = self._process_audio_input(audio_input)
return masked_audio_features
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
) -> torch.Tensor:
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
if multimodal_embeddings is not None \
and len(multimodal_embeddings) != 0:
inputs_embeds = merge_multimodal_embeddings(
input_ids, inputs_embeds, multimodal_embeddings,
self.config.audio_token_index)
return inputs_embeds
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs: object,
) -> Union[torch.Tensor, IntermediateTensors]:
if intermediate_tensors is not None:
inputs_embeds = None
# NOTE: In v1, inputs_embeds is always generated at model runner, this
# condition is for v0 compatibility.
elif inputs_embeds is None:
multimodal_embeddings = self.get_multimodal_embeddings(**kwargs)
inputs_embeds = self.get_input_embeddings(input_ids,
multimodal_embeddings)
input_ids = None
hidden_states = self.language_model.model(input_ids,
positions,
intermediate_tensors,
inputs_embeds=inputs_embeds)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
return self.language_model.compute_logits(hidden_states,
sampling_metadata)
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(self)
return loader.load_weights(weights)