vllm/tests/entrypoints/llm/test_chat.py
2025-11-02 16:24:01 +00:00

213 lines
5.7 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import weakref
import pytest
from vllm import LLM
from vllm.distributed import cleanup_dist_env_and_memory
from vllm.sampling_params import SamplingParams
from ..openai.test_vision import TEST_IMAGE_ASSETS
@pytest.fixture(scope="function")
def text_llm():
# pytest caches the fixture so we use weakref.proxy to
# enable garbage collection
llm = LLM(model="meta-llama/Llama-3.2-1B-Instruct", enforce_eager=True, seed=0)
yield weakref.proxy(llm)
del llm
cleanup_dist_env_and_memory()
@pytest.fixture(scope="function")
def llm_for_failure_test():
"""
Fixture for testing issue #26081.
Uses a small max_model_len to easily trigger length errors.
"""
# pytest caches the fixture so we use weakref.proxy to
# enable garbage collection
llm = LLM(
model="meta-llama/Llama-3.2-1B-Instruct",
enforce_eager=True,
seed=0,
max_model_len=128,
disable_log_stats=True,
)
yield weakref.proxy(llm)
del llm
cleanup_dist_env_and_memory()
def test_chat(text_llm):
prompt1 = "Explain the concept of entropy."
messages = [
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": prompt1},
]
outputs = text_llm.chat(messages)
assert len(outputs) == 1
def test_multi_chat(text_llm):
prompt1 = "Explain the concept of entropy."
prompt2 = "Explain what among us is."
conversation1 = [
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": prompt1},
]
conversation2 = [
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": prompt2},
]
messages = [conversation1, conversation2]
outputs = text_llm.chat(messages)
assert len(outputs) == 2
@pytest.fixture(scope="function")
def vision_llm():
# pytest caches the fixture so we use weakref.proxy to
# enable garbage collection
llm = LLM(
model="microsoft/Phi-3.5-vision-instruct",
max_model_len=4096,
max_num_seqs=5,
enforce_eager=True,
trust_remote_code=True,
limit_mm_per_prompt={"image": 2},
seed=0,
)
yield weakref.proxy(llm)
del llm
cleanup_dist_env_and_memory()
@pytest.mark.parametrize(
"image_urls", [[TEST_IMAGE_ASSETS[0], TEST_IMAGE_ASSETS[1]]], indirect=True
)
def test_chat_multi_image(vision_llm, image_urls: list[str]):
messages = [
{
"role": "user",
"content": [
*(
{"type": "image_url", "image_url": {"url": image_url}}
for image_url in image_urls
),
{"type": "text", "text": "What's in this image?"},
],
}
]
outputs = vision_llm.chat(messages)
assert len(outputs) >= 0
def test_llm_chat_tokenization_no_double_bos(text_llm):
"""
LLM.chat() should not add special tokens when using chat templates.
Check we get a single BOS token for llama chat.
"""
messages = [
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": "Hello!"},
]
outputs = text_llm.chat(messages)
assert len(outputs) == 1
prompt_token_ids = outputs[0].prompt_token_ids
assert prompt_token_ids is not None
bos_token = text_llm.get_tokenizer().bos_token_id
# Ensure we have a single BOS
assert prompt_token_ids[0] == bos_token
assert prompt_token_ids[1] != bos_token, "Double BOS"
@pytest.fixture(scope="function")
def thinking_llm():
# pytest caches the fixture so we use weakref.proxy to
# enable garbage collection
llm = LLM(
model="Qwen/Qwen3-0.6B",
max_model_len=4096,
enforce_eager=True,
seed=0,
)
yield weakref.proxy(llm)
del llm
cleanup_dist_env_and_memory()
@pytest.mark.parametrize("enable_thinking", [True, False])
def test_chat_extra_kwargs(thinking_llm, enable_thinking):
messages = [
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": "What is 1+1?"},
]
outputs = thinking_llm.chat(
messages,
chat_template_kwargs={"enable_thinking": enable_thinking},
)
assert len(outputs) == 1
prompt_token_ids = outputs[0].prompt_token_ids
assert prompt_token_ids is not None
think_id = thinking_llm.get_tokenizer().get_vocab()["<think>"]
if enable_thinking:
assert think_id not in prompt_token_ids
else:
# The chat template includes dummy thinking process
assert think_id in prompt_token_ids
def test_chat_batch_failure_cleanup(llm_for_failure_test):
"""
Tests that if a batch call to llm.chat() fails mid-way
(e.g., due to one invalid prompt), the requests that
were already enqueued are properly aborted and do not
pollute the queue for subsequent calls.
(Fixes Issue #26081)
"""
llm = llm_for_failure_test
valid_msg = [{"role": "user", "content": "Hello"}]
long_text = "This is a very long text to test the error " * 50
invalid_msg = [{"role": "user", "content": long_text}]
batch_1 = [
valid_msg,
valid_msg,
invalid_msg,
]
batch_2 = [
valid_msg,
valid_msg,
]
sampling_params = SamplingParams(temperature=0, max_tokens=10)
with pytest.raises(ValueError, match="longer than the maximum model length"):
llm.chat(batch_1, sampling_params=sampling_params)
outputs_2 = llm.chat(batch_2, sampling_params=sampling_params)
assert len(outputs_2) == len(batch_2)
assert llm.llm_engine.get_num_unfinished_requests() == 0