vllm/tests/kernels/test_flex_attention.py
Cyrus Leung 1e4ecca1d0
[V0 Deprecation] Remove VLLM_USE_V1 from tests (#26341)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-07 15:42:31 +00:00

217 lines
6.7 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Integration tests for FlexAttention backend vs default backend"""
import random
import numpy as np
import pytest
import torch
from packaging import version
from tests.v1.attention.utils import (
BatchSpec,
create_common_attn_metadata,
create_standard_kv_cache_spec,
create_vllm_config,
)
from vllm.v1.attention.backends.flex_attention import FlexAttentionMetadataBuilder
from ..models.utils import check_embeddings_close, check_logprobs_close
TORCH_VERSION = version.parse(torch.__version__)
MINIMUM_TORCH_VERSION = version.parse("2.7.0")
DIRECT_BUILD_VERSION = version.parse("2.9.dev0")
def set_seed(seed):
"""Set seeds for reproducibility"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
@pytest.mark.skipif(
not torch.cuda.is_available() or TORCH_VERSION < MINIMUM_TORCH_VERSION,
reason="CUDA not available or PyTorch version < 2.7",
)
def test_flex_attention_vs_default_backend(vllm_runner, monkeypatch):
"""Test that FlexAttention produces the same outputs as the default backend.
This test compares the outputs from the FlexAttention backend with
the default backend, ensuring they are similar when using the same seed.
"""
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
seed = 42
max_tokens = 24
num_logprobs = 5
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
]
# Run with flex attention
with monkeypatch.context() as m:
m.setenv("VLLM_ATTENTION_BACKEND", "FLEX_ATTENTION")
set_seed(seed)
with vllm_runner(
model_name,
runner="generate",
tensor_parallel_size=1,
num_gpu_blocks_override=128,
enforce_eager=True,
) as llm_flex:
output_flex = llm_flex.generate_greedy_logprobs(
prompts, max_tokens, num_logprobs
)
# Run with default backend
with monkeypatch.context() as m:
set_seed(seed)
with vllm_runner(
model_name,
runner="generate",
tensor_parallel_size=1,
num_gpu_blocks_override=128,
enforce_eager=True,
gpu_memory_utilization=0.85,
) as llm_default:
output_default = llm_default.generate_greedy_logprobs(
prompts, max_tokens, num_logprobs
)
check_logprobs_close(
outputs_0_lst=output_flex,
outputs_1_lst=output_default,
name_0="flex",
name_1="default",
)
@pytest.mark.skipif(
not torch.cuda.is_available() or TORCH_VERSION < MINIMUM_TORCH_VERSION,
reason="CUDA not available or PyTorch version < 2.7",
)
def test_encoder_flex_attention_vs_default_backend(vllm_runner, monkeypatch):
"""Test that FlexAttention produces the same outputs as the default backend.
This test compares the outputs from the FlexAttention backend with
the default backend for encoder models.
"""
model_name = "BAAI/bge-base-en-v1.5"
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
]
# Run with flex attention
with monkeypatch.context() as m:
m.setenv("VLLM_ATTENTION_BACKEND", "FLEX_ATTENTION")
with vllm_runner(
model_name,
runner="pooling",
dtype=torch.bfloat16,
tensor_parallel_size=1,
max_model_len=100,
enforce_eager=True,
) as llm_flex:
flex_outputs = llm_flex.embed(prompts)
# Run with default backend
with (
monkeypatch.context() as m,
vllm_runner(
model_name,
runner="pooling",
dtype=torch.bfloat16,
tensor_parallel_size=1,
max_model_len=100,
enforce_eager=True,
) as llm_default,
):
default_outputs = llm_default.embed(prompts)
check_embeddings_close(
embeddings_0_lst=flex_outputs,
embeddings_1_lst=default_outputs,
name_0="flex",
name_1="default",
tol=1e-2,
)
@pytest.mark.skipif(
not torch.cuda.is_available() or TORCH_VERSION < DIRECT_BUILD_VERSION,
reason="CUDA not available or PyTorch version < 2.7",
)
def test_block_mask_direct_vs_slow_path():
"""Test that direct path block mask is a superset of slow path.
The direct path may include extra blocks for performance (over-estimation),
but must include all blocks that the slow path determines are necessary.
"""
device = torch.device("cuda")
vllm_config = create_vllm_config(
model_name="meta-llama/Meta-Llama-3-8B", block_size=16, max_model_len=1024
)
kv_cache_spec = create_standard_kv_cache_spec(vllm_config)
# Use a mixed batch that will create groups spanning multiple sequences
batch_spec = BatchSpec(
seq_lens=[35, 64, 128, 256], query_lens=[33, 5, 32, 64], name="test_mixed_batch"
)
common_attn_metadata = create_common_attn_metadata(
batch_spec, vllm_config.cache_config.block_size, device
)
builder = FlexAttentionMetadataBuilder(kv_cache_spec, [], vllm_config, device)
metadata_direct = builder.build(
common_prefix_len=0, common_attn_metadata=common_attn_metadata
)
builder.direct_build = False
metadata_slow = builder.build(
common_prefix_len=0, common_attn_metadata=common_attn_metadata
)
assert metadata_direct.block_mask is not None
assert metadata_slow.block_mask is not None
# Extract block indices for comparison, B, H are the same
direct_indices = metadata_direct.block_mask.kv_indices[0, 0]
slow_indices = metadata_slow.block_mask.kv_indices[0, 0]
direct_num = metadata_direct.block_mask.kv_num_blocks[0, 0]
slow_num = metadata_slow.block_mask.kv_num_blocks[0, 0]
# main test: every block needed by slow path must be in direct path
num_groups = direct_num.shape[0]
all_contained = True
missing_details = []
for group_idx in range(num_groups):
direct_blocks = set(direct_indices[group_idx, : direct_num[group_idx]].tolist())
slow_blocks = set(slow_indices[group_idx, : slow_num[group_idx]].tolist())
missing_blocks = slow_blocks - direct_blocks
if missing_blocks:
all_contained = False
missing_details.append(
f"Group {group_idx}: missing {sorted(missing_blocks)}"
)
assert all_contained, (
"Direct path is missing blocks required by slow path:\n"
+ "\n".join(missing_details)
)
if __name__ == "__main__":
pytest.main([__file__])