vllm/tests/kernels/test_shuffle_rows.py
Harry Mellor d6953beb91
Convert formatting to use ruff instead of yapf + isort (#26247)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-05 07:06:22 -07:00

261 lines
8.9 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Tests for the shuffle_rows function
Run `pytest tests/kernels/test_shuffle_rows.py`.
"""
import pytest
import torch
from vllm._custom_ops import shuffle_rows
from vllm.platforms import current_platform
@pytest.mark.parametrize("num_tokens", [1, 16, 64, 128, 256, 512, 1024])
@pytest.mark.parametrize("hidden_size", [128, 256, 512, 1024, 2048, 4096])
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32])
def test_shuffle_rows_basic(num_tokens: int, hidden_size: int, dtype: torch.dtype):
"""Test basic functionality of shuffle_rows with various tensor sizes and
dtypes."""
if not current_platform.is_cuda():
pytest.skip("shuffle_rows requires CUDA")
# Create input tensor
input_tensor = torch.randn(num_tokens, hidden_size, device="cuda", dtype=dtype)
# Create a simple permutation map (identity mapping)
dst2src_map = torch.arange(num_tokens, device="cuda", dtype=torch.int32)
# Test shuffle_rows
output = shuffle_rows(input_tensor, dst2src_map)
# With identity mapping, output should be identical to input
torch.testing.assert_close(output, input_tensor, atol=0, rtol=0)
# Check output shape
assert output.shape == (num_tokens, hidden_size)
assert output.dtype == dtype
assert output.device == input_tensor.device
@pytest.mark.parametrize("num_tokens", [16, 64, 128])
@pytest.mark.parametrize("hidden_size", [128, 512, 1024])
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
def test_shuffle_rows_permutation(
num_tokens: int, hidden_size: int, dtype: torch.dtype
):
"""Test shuffle_rows with actual permutation."""
if not current_platform.is_cuda():
pytest.skip("shuffle_rows requires CUDA")
# Create input tensor
input_tensor = torch.randn(num_tokens, hidden_size, device="cuda", dtype=dtype)
# Create a reverse permutation map
dst2src_map = torch.arange(num_tokens - 1, -1, -1, device="cuda", dtype=torch.int32)
# Test shuffle_rows
output = shuffle_rows(input_tensor, dst2src_map)
# Check that the output is the reverse of the input
expected_output = torch.flip(input_tensor, dims=[0])
torch.testing.assert_close(output, expected_output, atol=1e-6, rtol=1e-5)
# Check output shape and properties
assert output.shape == (num_tokens, hidden_size)
assert output.dtype == dtype
assert output.device == input_tensor.device
@pytest.mark.parametrize("num_tokens", [32, 64])
@pytest.mark.parametrize("hidden_size", [256, 512])
def test_shuffle_rows_expansion(num_tokens: int, hidden_size: int):
"""Test shuffle_rows with expansion (more output tokens than input
tokens)."""
if not current_platform.is_cuda():
pytest.skip("shuffle_rows requires CUDA")
dtype = torch.float16
# Create input tensor
input_tensor = torch.randn(num_tokens, hidden_size, device="cuda", dtype=dtype)
# Create a mapping that duplicates some tokens (expansion)
expanded_size = num_tokens * 2
dst2src_map = torch.randint(
0, num_tokens, (expanded_size,), device="cuda", dtype=torch.int32
)
# Test shuffle_rows
output = shuffle_rows(input_tensor, dst2src_map)
# Check output shape
assert output.shape == (expanded_size, hidden_size)
assert output.dtype == dtype
assert output.device == input_tensor.device
# Verify that each output row matches the corresponding input row
for i in range(expanded_size):
src_idx = dst2src_map[i].item()
torch.testing.assert_close(
output[i], input_tensor[src_idx], atol=1e-6, rtol=1e-5
)
@pytest.mark.parametrize("num_tokens", [16, 64])
@pytest.mark.parametrize("hidden_size", [128, 512])
def test_shuffle_rows_random_permutation(num_tokens: int, hidden_size: int):
"""Test shuffle_rows with random permutation."""
if not current_platform.is_cuda():
pytest.skip("shuffle_rows requires CUDA")
dtype = torch.float16
# Set seed for reproducibility
torch.manual_seed(42)
# Create input tensor
input_tensor = torch.randn(num_tokens, hidden_size, device="cuda", dtype=dtype)
# Create a random permutation map
dst2src_map = torch.randperm(num_tokens, device="cuda", dtype=torch.int32)
# Test shuffle_rows
output = shuffle_rows(input_tensor, dst2src_map)
# Check output shape and properties
assert output.shape == (num_tokens, hidden_size)
assert output.dtype == dtype
assert output.device == input_tensor.device
# Verify that each output row matches the corresponding input row
for i in range(num_tokens):
src_idx = dst2src_map[i].item()
torch.testing.assert_close(
output[i], input_tensor[src_idx], atol=1e-6, rtol=1e-5
)
def test_shuffle_rows_edge_cases():
"""Test shuffle_rows with edge cases."""
if not current_platform.is_cuda():
pytest.skip("shuffle_rows requires CUDA")
dtype = torch.float16
# Test with single token
input_tensor = torch.randn(1, 128, device="cuda", dtype=dtype)
dst2src_map = torch.tensor([0], device="cuda", dtype=torch.int32)
output = shuffle_rows(input_tensor, dst2src_map)
torch.testing.assert_close(output, input_tensor, atol=0, rtol=0)
# Test with single feature dimension
input_tensor = torch.randn(16, 1, device="cuda", dtype=dtype)
dst2src_map = torch.arange(16, device="cuda", dtype=torch.int32)
output = shuffle_rows(input_tensor, dst2src_map)
torch.testing.assert_close(output, input_tensor, atol=0, rtol=0)
def test_shuffle_rows_moe_like_scenario():
"""Test shuffle_rows in a scenario similar to MoE usage."""
if not current_platform.is_cuda():
pytest.skip("shuffle_rows requires CUDA")
dtype = torch.float16
batch_size = 32
hidden_size = 1024
topk = 2
# Simulate input tokens
input_tensor = torch.randn(batch_size, hidden_size, device="cuda", dtype=dtype)
# Simulate expert assignment (each token goes to topk experts)
# This creates a mapping where tokens are duplicated for multiple experts
total_tokens = batch_size * topk
dst2src_map = torch.zeros(total_tokens, device="cuda", dtype=torch.int32)
# Fill the mapping to simulate MoE token distribution
for i in range(batch_size):
for k in range(topk):
dst2src_map[i * topk + k] = i
# Test shuffle_rows
output = shuffle_rows(input_tensor, dst2src_map)
# Check output shape
assert output.shape == (total_tokens, hidden_size)
assert output.dtype == dtype
assert output.device == input_tensor.device
# Verify that tokens are correctly duplicated
for i in range(batch_size):
for k in range(topk):
output_idx = i * topk + k
torch.testing.assert_close(
output[output_idx], input_tensor[i], atol=1e-6, rtol=1e-5
)
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32])
def test_shuffle_rows_dtype_consistency(dtype: torch.dtype):
"""Test that shuffle_rows preserves dtype correctly."""
if not current_platform.is_cuda():
pytest.skip("shuffle_rows requires CUDA")
num_tokens = 64
hidden_size = 512
# Create input tensor with specific dtype
input_tensor = torch.randn(num_tokens, hidden_size, device="cuda", dtype=dtype)
dst2src_map = torch.arange(num_tokens, device="cuda", dtype=torch.int32)
# Test shuffle_rows
output = shuffle_rows(input_tensor, dst2src_map)
# Verify dtype is preserved
assert output.dtype == dtype
assert output.device == input_tensor.device
torch.testing.assert_close(output, input_tensor, atol=1e-6, rtol=1e-5)
def test_shuffle_rows_device_consistency():
"""Test that shuffle_rows maintains device consistency."""
if not current_platform.is_cuda():
pytest.skip("shuffle_rows requires CUDA")
num_tokens = 32
hidden_size = 256
dtype = torch.float16
# Create input tensor on CUDA
input_tensor = torch.randn(num_tokens, hidden_size, device="cuda", dtype=dtype)
dst2src_map = torch.arange(num_tokens, device="cuda", dtype=torch.int32)
# Test shuffle_rows
output = shuffle_rows(input_tensor, dst2src_map)
# Verify device is maintained
assert output.device == input_tensor.device
assert output.device.type == "cuda"
def test_shuffle_rows_contiguous_output():
"""Test that shuffle_rows produces contiguous output."""
if not current_platform.is_cuda():
pytest.skip("shuffle_rows requires CUDA")
num_tokens = 64
hidden_size = 512
dtype = torch.float16
# Create input tensor
input_tensor = torch.randn(num_tokens, hidden_size, device="cuda", dtype=dtype)
dst2src_map = torch.arange(num_tokens, device="cuda", dtype=torch.int32)
# Test shuffle_rows
output = shuffle_rows(input_tensor, dst2src_map)
# Verify output is contiguous
assert output.is_contiguous()