mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-21 03:45:01 +08:00
676 lines
24 KiB
Python
676 lines
24 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""Inference-only FalconH1 model."""
|
|
|
|
from collections.abc import Iterable
|
|
from itertools import islice
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import FalconH1Config
|
|
|
|
from vllm.attention.layer import Attention
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import CacheConfig, ModelConfig, VllmConfig
|
|
from vllm.distributed import get_tensor_model_parallel_world_size
|
|
from vllm.distributed.parallel_state import get_pp_group
|
|
from vllm.model_executor.layers.activation import SiluAndMul
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (
|
|
MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.mamba.mamba_mixer2 import MambaMixer2
|
|
from vllm.model_executor.layers.mamba.mamba_utils import (
|
|
MambaStateDtypeCalculator,
|
|
MambaStateShapeCalculator,
|
|
)
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.transformers_utils.config import set_default_rope_theta
|
|
|
|
from .interfaces import (
|
|
HasInnerState,
|
|
IsHybrid,
|
|
SupportsLoRA,
|
|
SupportsMambaPrefixCaching,
|
|
SupportsPP,
|
|
)
|
|
from .utils import (
|
|
PPMissingLayer,
|
|
is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory,
|
|
make_layers,
|
|
maybe_prefix,
|
|
)
|
|
|
|
|
|
class FalconH1MLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: FalconH1Config,
|
|
quant_config: QuantizationConfig | None = None,
|
|
bias: bool = False,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.gate_up_proj = MergedColumnParallelLinear(
|
|
input_size=config.hidden_size,
|
|
output_sizes=[config.intermediate_size] * 2,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.gate_up_proj",
|
|
)
|
|
self.down_proj = RowParallelLinear(
|
|
input_size=config.intermediate_size,
|
|
output_size=config.hidden_size,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.down_proj",
|
|
)
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
self.intermediate_size = config.intermediate_size
|
|
self.gate_multiplier, self.down_multiplier = config.mlp_multipliers
|
|
if config.hidden_act != "silu":
|
|
raise ValueError(
|
|
f"Unsupported activation: {config.hidden_act}. "
|
|
"Only silu is supported for now."
|
|
)
|
|
self.act_fn = SiluAndMul()
|
|
|
|
def forward(self, x):
|
|
x, _ = self.gate_up_proj(x)
|
|
x[:, : self.intermediate_size // self.tp_size] *= self.gate_multiplier
|
|
x = self.act_fn(x)
|
|
x, _ = self.down_proj(x)
|
|
x = x * self.down_multiplier
|
|
return x
|
|
|
|
|
|
class FalconH1SSMDecoderLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: FalconH1Config,
|
|
model_config: ModelConfig | None = None,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.config = config
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
|
|
self.d_ssm = (
|
|
int(config.mamba_expand * config.hidden_size)
|
|
if config.mamba_d_ssm is None
|
|
else config.mamba_d_ssm
|
|
)
|
|
|
|
self.mamba = MambaMixer2(
|
|
hidden_size=config.hidden_size,
|
|
ssm_state_size=config.mamba_d_state,
|
|
conv_kernel_size=config.mamba_d_conv,
|
|
intermediate_size=self.d_ssm,
|
|
use_conv_bias=config.mamba_conv_bias,
|
|
use_bias=config.mamba_proj_bias,
|
|
n_groups=config.mamba_n_groups,
|
|
num_heads=config.mamba_n_heads,
|
|
head_dim=config.mamba_d_head,
|
|
rms_norm_eps=config.rms_norm_eps,
|
|
activation=config.hidden_act,
|
|
model_config=model_config,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
use_rms_norm=config.mamba_rms_norm,
|
|
prefix=f"{prefix}.mixer",
|
|
)
|
|
# n_groups is overridden later by `MambaMixer2`
|
|
self.groups_time_state_size = self.mamba.n_groups * config.mamba_d_state
|
|
self.zxbcdt_multipliers = config.ssm_multipliers
|
|
self._init_mup_vector()
|
|
|
|
def _init_mup_vector(self):
|
|
"""
|
|
Non learnable per-block scaling vector composed of element-wise
|
|
multipliersapplied to each separate contiguous block of the output
|
|
of the linear projection (in_proj) before further processing
|
|
(gating, convolution, SSM):
|
|
|
|
- Z block: [0 : d_ssm] → zxbcdt_multipliers[0]
|
|
- X block: [d_ssm : 2 * d_ssm] → zxbcdt_multipliers[1]
|
|
- B block: [2 * d_ssm : 2 * d_ssm + G * S] → zxbcdt_multipliers[2]
|
|
- C block: [2 * d_ssm + G * S : 2 * d_ssm + 2 * G * S]
|
|
→ zxbcdt_multipliers[3]
|
|
- dt block: [2 * d_ssm + 2 * G * S : end] → zxbcdt_multipliers[4]
|
|
|
|
where:
|
|
- d_ssm: Dimension of state-space model latent
|
|
- G: Number of groups (n_groups)
|
|
- S: SSM state size per group
|
|
- All indices are divided by tp_size to support tensor parallelism
|
|
"""
|
|
vector_shape = (
|
|
2 * self.d_ssm + 2 * self.groups_time_state_size + self.config.mamba_n_heads
|
|
) // self.tp_size
|
|
mup_vector = torch.ones(1, vector_shape)
|
|
# Z vector 0 -> d_ssm
|
|
mup_vector[:, : self.d_ssm // self.tp_size] *= self.zxbcdt_multipliers[0]
|
|
# X vector d_ssm -> 2 * d_ssm
|
|
mup_vector[
|
|
:, (self.d_ssm // self.tp_size) : (2 * self.d_ssm // self.tp_size)
|
|
] *= self.zxbcdt_multipliers[1]
|
|
# B vector 2 * d_ssm -> 2 * d_ssm + (n_group * d_state)
|
|
mup_vector[
|
|
:,
|
|
(2 * self.d_ssm) // self.tp_size : (
|
|
2 * self.d_ssm + self.groups_time_state_size
|
|
)
|
|
// self.tp_size,
|
|
] *= self.zxbcdt_multipliers[2]
|
|
# C vector 2 * d_ssm + (n_group * d_state)
|
|
# -> 2 * d_ssm + 2 * (n_group * d_state)
|
|
mup_vector[
|
|
:,
|
|
(2 * self.d_ssm + self.groups_time_state_size) // self.tp_size : (
|
|
2 * self.d_ssm + 2 * self.groups_time_state_size
|
|
)
|
|
// self.tp_size,
|
|
] *= self.zxbcdt_multipliers[3]
|
|
# dt vector 2 * d_ssm + 2 * (n_group * d_state)
|
|
# -> 2 * d_ssm + 2 * (n_group * d_state) + n_heads
|
|
mup_vector[
|
|
:,
|
|
(2 * self.d_ssm + 2 * self.groups_time_state_size) // self.tp_size :,
|
|
] *= self.zxbcdt_multipliers[4]
|
|
|
|
self.register_buffer("mup_vector", mup_vector, persistent=False)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
residual: torch.Tensor | None,
|
|
**kwargs,
|
|
):
|
|
output = self.mamba(
|
|
hidden_states,
|
|
mup_vector=self.mup_vector,
|
|
)
|
|
return output, residual
|
|
|
|
|
|
class FalconH1AttentionDecoderLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: FalconH1Config,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
set_default_rope_theta(config, default_theta=1e11)
|
|
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
|
|
self.hidden_size = config.hidden_size
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
self.total_num_heads = config.num_attention_heads
|
|
assert self.total_num_heads % tp_size == 0
|
|
self.num_heads = self.total_num_heads // tp_size
|
|
self.total_num_kv_heads = config.num_key_value_heads
|
|
if self.total_num_kv_heads >= tp_size:
|
|
# Number of KV heads is greater than TP size, so we partition
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert self.total_num_kv_heads % tp_size == 0
|
|
else:
|
|
# Number of KV heads is less than TP size, so we replicate
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert tp_size % self.total_num_kv_heads == 0
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
|
self.head_dim = (
|
|
config.hidden_size // self.total_num_heads
|
|
if getattr(config, "head_dim", None) is None
|
|
else config.head_dim
|
|
)
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
self.scaling = self.head_dim**-0.5
|
|
self.max_position_embeddings = max_position_embeddings
|
|
|
|
rotary_dim = getattr(config, "attn_rotary_emb", self.head_dim)
|
|
config.rope_parameters["partial_rotary_factor"] = rotary_dim / self.head_dim
|
|
|
|
self.rotary_emb = get_rope(
|
|
head_size=self.head_dim,
|
|
max_position=max_position_embeddings,
|
|
rope_parameters=config.rope_parameters,
|
|
is_neox_style=True,
|
|
dtype=None, # see impl of get_rope
|
|
)
|
|
|
|
self.qkv_proj = QKVParallelLinear(
|
|
config.hidden_size,
|
|
self.head_dim,
|
|
self.total_num_heads,
|
|
self.total_num_kv_heads,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.qkv_proj",
|
|
)
|
|
self.o_proj = RowParallelLinear(
|
|
self.total_num_heads * self.head_dim,
|
|
config.hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.o_proj",
|
|
)
|
|
|
|
self.attn = Attention(
|
|
self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
num_kv_heads=self.num_kv_heads,
|
|
cache_config=cache_config,
|
|
prefix=f"{prefix}.attn",
|
|
)
|
|
self.key_multiplier = config.key_multiplier
|
|
|
|
def self_attention(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
**kwargs,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.qkv_proj(hidden_states)
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
k = k * self.key_multiplier
|
|
|
|
q, k = self.rotary_emb(positions, q, k)
|
|
attn_output = self.attn(q, k, v)
|
|
output, _ = self.o_proj(attn_output)
|
|
return output
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
residual: torch.Tensor | None,
|
|
**kwargs,
|
|
):
|
|
hidden_states = self.self_attention(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
)
|
|
return hidden_states, residual
|
|
|
|
|
|
class FalconH1ParallelHybrid(nn.Module):
|
|
"""
|
|
A hybrid decoder layer for FalconH1 where the input is processed
|
|
in parallel through both the self-attention branch and the SSM (Mamba)
|
|
branch. Their outputs are then summed to produce the final hidden state.
|
|
|
|
This layer uses:
|
|
- FalconH1AttentionDecoderLayer for the multi-head self-attention branch.
|
|
- FalconH1SSMDecoderLayer for the state-space (Mamba) branch.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
config: FalconH1Config,
|
|
layer_idx: int,
|
|
model_config: ModelConfig | None = None,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
# Instantiate the attention branch
|
|
self.self_attn = FalconH1AttentionDecoderLayer(
|
|
config=config,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=prefix,
|
|
)
|
|
|
|
# In V1 all attention/ssm layers must have
|
|
# different index in prefix
|
|
ssm_layer_idx = config.num_hidden_layers + layer_idx
|
|
ssm_prefix = prefix.split(".")[0] + f".{ssm_layer_idx}"
|
|
|
|
# Instantiate the SSM branch
|
|
self.mamba = FalconH1SSMDecoderLayer(
|
|
config=config,
|
|
model_config=model_config,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=ssm_prefix,
|
|
)
|
|
self.ssm_out_multiplier = config.ssm_out_multiplier
|
|
self.ssm_in_multiplier = config.ssm_in_multiplier
|
|
|
|
self.attention_in_multiplier = config.attention_in_multiplier
|
|
self.attn_out_multiplier = config.attention_out_multiplier
|
|
|
|
self.feed_forward = FalconH1MLP(config, prefix=f"{prefix}.feed_forward")
|
|
|
|
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.pre_ff_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
**kwargs,
|
|
):
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
# Process input through the attention branch.
|
|
# FalconH1AttentionDecoderLayer expects positions, hidden_states,
|
|
# kv_cache, attn_metadata, and residual.
|
|
attn_hidden, _ = self.self_attn(
|
|
positions=positions,
|
|
hidden_states=hidden_states * self.attention_in_multiplier,
|
|
residual=residual,
|
|
**kwargs,
|
|
)
|
|
|
|
# Process input through the SSM branch.
|
|
# FalconH1SSMDecoderLayer expects hidden_states, attn_metadata,
|
|
# residual, and sequence_idx.
|
|
ssm_hidden, _ = self.mamba(
|
|
hidden_states=hidden_states * self.ssm_in_multiplier,
|
|
residual=residual,
|
|
**kwargs,
|
|
)
|
|
# Sum the outputs from both branches.
|
|
# We assume both branches produce outputs of the same
|
|
# dimensionality (config.hidden_size).
|
|
hidden_states = (attn_hidden * self.attn_out_multiplier) + (
|
|
ssm_hidden * self.ssm_out_multiplier
|
|
)
|
|
hidden_states = hidden_states + residual
|
|
|
|
# feed-forward
|
|
residual = hidden_states
|
|
hidden_states = self.pre_ff_layernorm(hidden_states)
|
|
hidden_states = self.feed_forward(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
|
|
return hidden_states
|
|
|
|
|
|
@support_torch_compile
|
|
class FalconH1Model(nn.Module):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config: FalconH1Config = vllm_config.model_config.hf_config
|
|
model_config = vllm_config.model_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
|
|
self.config = config
|
|
|
|
self.vocab_size = config.vocab_size
|
|
|
|
if get_pp_group().is_first_rank:
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
self.vocab_size,
|
|
config.hidden_size,
|
|
)
|
|
self.embedding_multiplier = config.embedding_multiplier
|
|
else:
|
|
self.embed_tokens = PPMissingLayer()
|
|
self.embedding_multiplier = 1.0
|
|
|
|
def get_layer(prefix: str):
|
|
layer_idx = int(prefix.rsplit(".", 1)[1])
|
|
layer_class = FalconH1ParallelHybrid
|
|
return layer_class(
|
|
config,
|
|
layer_idx,
|
|
model_config,
|
|
cache_config,
|
|
quant_config=quant_config,
|
|
prefix=prefix,
|
|
)
|
|
|
|
self.start_layer, self.end_layer, self.layers = make_layers(
|
|
config.num_hidden_layers, get_layer, prefix=f"{prefix}.layers"
|
|
)
|
|
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
|
|
["hidden_states", "residual"], config.hidden_size
|
|
)
|
|
if get_pp_group().is_last_rank:
|
|
self.final_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
else:
|
|
self.final_layernorm = PPMissingLayer()
|
|
|
|
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.embed_tokens(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> torch.Tensor:
|
|
if get_pp_group().is_first_rank:
|
|
if inputs_embeds is not None:
|
|
hidden_states = inputs_embeds * self.embedding_multiplier
|
|
else:
|
|
hidden_states = (
|
|
self.embed_input_ids(input_ids) * self.embedding_multiplier
|
|
)
|
|
else:
|
|
assert intermediate_tensors is not None
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
|
|
for layer in islice(self.layers, self.start_layer, self.end_layer):
|
|
hidden_states = layer(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
)
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors(
|
|
{
|
|
"hidden_states": hidden_states,
|
|
}
|
|
)
|
|
hidden_states = self.final_layernorm(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class FalconH1ForCausalLM(
|
|
nn.Module,
|
|
HasInnerState,
|
|
SupportsLoRA,
|
|
SupportsPP,
|
|
IsHybrid,
|
|
SupportsMambaPrefixCaching,
|
|
):
|
|
packed_modules_mapping = {
|
|
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
|
|
"gate_up_proj": ["gate_proj", "up_proj"],
|
|
}
|
|
|
|
embedding_modules = {
|
|
"embed_tokens": "input_embeddings",
|
|
"lm_head": "output_embeddings",
|
|
}
|
|
|
|
@classmethod
|
|
def get_mamba_state_dtype_from_config(
|
|
cls,
|
|
vllm_config: "VllmConfig",
|
|
) -> tuple[torch.dtype, torch.dtype]:
|
|
return MambaStateDtypeCalculator.mamba2_state_dtype(
|
|
vllm_config.model_config.dtype,
|
|
vllm_config.cache_config.mamba_cache_dtype,
|
|
vllm_config.cache_config.mamba_ssm_cache_dtype,
|
|
)
|
|
|
|
@classmethod
|
|
def get_mamba_state_shape_from_config(
|
|
cls,
|
|
vllm_config: "VllmConfig",
|
|
) -> tuple[tuple[int, int], tuple[int, int, int]]:
|
|
"""Calculate shapes for Mamba's convolutional and state caches.
|
|
|
|
Args:
|
|
vllm_config: vLLM config
|
|
|
|
Returns:
|
|
Tuple containing:
|
|
- conv_state_shape: Shape for convolutional state cache
|
|
- temporal_state_shape: Shape for state space model cache
|
|
"""
|
|
parallel_config = vllm_config.parallel_config
|
|
hf_config = vllm_config.model_config.hf_config
|
|
|
|
intermediate_size = (
|
|
int(hf_config.mamba_expand * hf_config.hidden_size)
|
|
if hf_config.mamba_d_ssm is None
|
|
else hf_config.mamba_d_ssm
|
|
)
|
|
|
|
return MambaStateShapeCalculator.mamba2_state_shape(
|
|
intermediate_size=intermediate_size,
|
|
tp_world_size=parallel_config.tensor_parallel_size,
|
|
n_groups=hf_config.mamba_n_groups,
|
|
num_heads=hf_config.mamba_n_heads,
|
|
head_dim=hf_config.mamba_d_head,
|
|
state_size=hf_config.mamba_d_state,
|
|
conv_kernel=hf_config.mamba_d_conv,
|
|
)
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
config = vllm_config.model_config.hf_config
|
|
self.vllm_config = vllm_config
|
|
self.model_config = vllm_config.model_config
|
|
|
|
scheduler_config = vllm_config.scheduler_config
|
|
|
|
self.quant_config = vllm_config.quant_config
|
|
|
|
super().__init__()
|
|
self.config = config
|
|
self.scheduler_config = scheduler_config
|
|
self.model = FalconH1Model(
|
|
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
|
|
)
|
|
self.tie_word_embeddings = config.tie_word_embeddings
|
|
|
|
if get_pp_group().is_last_rank:
|
|
self.lm_head = ParallelLMHead(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
prefix=maybe_prefix(prefix, "lm_head"),
|
|
)
|
|
self.lm_head_multiplier = config.lm_head_multiplier
|
|
if self.tie_word_embeddings:
|
|
self.lm_head = self.lm_head.tie_weights(self.model.embed_tokens)
|
|
# Used to track and store by the Mamba cache between steps.
|
|
|
|
self.logits_processor = LogitsProcessor(
|
|
config.vocab_size,
|
|
config.vocab_size,
|
|
scale=config.lm_head_multiplier,
|
|
)
|
|
else:
|
|
self.lm_head = PPMissingLayer()
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.model.make_empty_intermediate_tensors
|
|
)
|
|
|
|
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.model.embed_input_ids(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
**kwargs,
|
|
):
|
|
hidden_states = self.model(
|
|
input_ids,
|
|
positions,
|
|
intermediate_tensors,
|
|
inputs_embeds,
|
|
)
|
|
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | None:
|
|
logits = self.logits_processor(self.lm_head, hidden_states)
|
|
|
|
return logits
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
("gate_up_proj", "gate_proj", 0),
|
|
("gate_up_proj", "up_proj", 1),
|
|
]
|
|
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
if "rotary_emb.inv_freq" in name:
|
|
continue
|
|
|
|
if "A_log" in name:
|
|
name = name.replace("A_log", "A")
|
|
|
|
if "mamba" in name:
|
|
name = name.replace("mamba", "mamba.mamba")
|
|
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
# Skip layers on other devices.
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
if self.tie_word_embeddings and "lm_head" in name:
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
|
|
if self.tie_word_embeddings:
|
|
loaded_params.add("lm_head.weight")
|
|
return loaded_params
|