Harry Mellor cf3eacfe58
Standardise get_rope to use rope_parameters["partial_rotary_factor"], not rotary_dim (#30389)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-12-11 20:45:23 +00:00

676 lines
24 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Inference-only FalconH1 model."""
from collections.abc import Iterable
from itertools import islice
import torch
from torch import nn
from transformers import FalconH1Config
from vllm.attention.layer import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, ModelConfig, VllmConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.distributed.parallel_state import get_pp_group
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.mamba.mamba_mixer2 import MambaMixer2
from vllm.model_executor.layers.mamba.mamba_utils import (
MambaStateDtypeCalculator,
MambaStateShapeCalculator,
)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.config import set_default_rope_theta
from .interfaces import (
HasInnerState,
IsHybrid,
SupportsLoRA,
SupportsMambaPrefixCaching,
SupportsPP,
)
from .utils import (
PPMissingLayer,
is_pp_missing_parameter,
make_empty_intermediate_tensors_factory,
make_layers,
maybe_prefix,
)
class FalconH1MLP(nn.Module):
def __init__(
self,
config: FalconH1Config,
quant_config: QuantizationConfig | None = None,
bias: bool = False,
prefix: str = "",
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
input_size=config.hidden_size,
output_sizes=[config.intermediate_size] * 2,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
self.down_proj = RowParallelLinear(
input_size=config.intermediate_size,
output_size=config.hidden_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.down_proj",
)
self.tp_size = get_tensor_model_parallel_world_size()
self.intermediate_size = config.intermediate_size
self.gate_multiplier, self.down_multiplier = config.mlp_multipliers
if config.hidden_act != "silu":
raise ValueError(
f"Unsupported activation: {config.hidden_act}. "
"Only silu is supported for now."
)
self.act_fn = SiluAndMul()
def forward(self, x):
x, _ = self.gate_up_proj(x)
x[:, : self.intermediate_size // self.tp_size] *= self.gate_multiplier
x = self.act_fn(x)
x, _ = self.down_proj(x)
x = x * self.down_multiplier
return x
class FalconH1SSMDecoderLayer(nn.Module):
def __init__(
self,
config: FalconH1Config,
model_config: ModelConfig | None = None,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.tp_size = get_tensor_model_parallel_world_size()
self.d_ssm = (
int(config.mamba_expand * config.hidden_size)
if config.mamba_d_ssm is None
else config.mamba_d_ssm
)
self.mamba = MambaMixer2(
hidden_size=config.hidden_size,
ssm_state_size=config.mamba_d_state,
conv_kernel_size=config.mamba_d_conv,
intermediate_size=self.d_ssm,
use_conv_bias=config.mamba_conv_bias,
use_bias=config.mamba_proj_bias,
n_groups=config.mamba_n_groups,
num_heads=config.mamba_n_heads,
head_dim=config.mamba_d_head,
rms_norm_eps=config.rms_norm_eps,
activation=config.hidden_act,
model_config=model_config,
cache_config=cache_config,
quant_config=quant_config,
use_rms_norm=config.mamba_rms_norm,
prefix=f"{prefix}.mixer",
)
# n_groups is overridden later by `MambaMixer2`
self.groups_time_state_size = self.mamba.n_groups * config.mamba_d_state
self.zxbcdt_multipliers = config.ssm_multipliers
self._init_mup_vector()
def _init_mup_vector(self):
"""
Non learnable per-block scaling vector composed of element-wise
multipliersapplied to each separate contiguous block of the output
of the linear projection (in_proj) before further processing
(gating, convolution, SSM):
- Z block: [0 : d_ssm] → zxbcdt_multipliers[0]
- X block: [d_ssm : 2 * d_ssm] → zxbcdt_multipliers[1]
- B block: [2 * d_ssm : 2 * d_ssm + G * S] → zxbcdt_multipliers[2]
- C block: [2 * d_ssm + G * S : 2 * d_ssm + 2 * G * S]
→ zxbcdt_multipliers[3]
- dt block: [2 * d_ssm + 2 * G * S : end] → zxbcdt_multipliers[4]
where:
- d_ssm: Dimension of state-space model latent
- G: Number of groups (n_groups)
- S: SSM state size per group
- All indices are divided by tp_size to support tensor parallelism
"""
vector_shape = (
2 * self.d_ssm + 2 * self.groups_time_state_size + self.config.mamba_n_heads
) // self.tp_size
mup_vector = torch.ones(1, vector_shape)
# Z vector 0 -> d_ssm
mup_vector[:, : self.d_ssm // self.tp_size] *= self.zxbcdt_multipliers[0]
# X vector d_ssm -> 2 * d_ssm
mup_vector[
:, (self.d_ssm // self.tp_size) : (2 * self.d_ssm // self.tp_size)
] *= self.zxbcdt_multipliers[1]
# B vector 2 * d_ssm -> 2 * d_ssm + (n_group * d_state)
mup_vector[
:,
(2 * self.d_ssm) // self.tp_size : (
2 * self.d_ssm + self.groups_time_state_size
)
// self.tp_size,
] *= self.zxbcdt_multipliers[2]
# C vector 2 * d_ssm + (n_group * d_state)
# -> 2 * d_ssm + 2 * (n_group * d_state)
mup_vector[
:,
(2 * self.d_ssm + self.groups_time_state_size) // self.tp_size : (
2 * self.d_ssm + 2 * self.groups_time_state_size
)
// self.tp_size,
] *= self.zxbcdt_multipliers[3]
# dt vector 2 * d_ssm + 2 * (n_group * d_state)
# -> 2 * d_ssm + 2 * (n_group * d_state) + n_heads
mup_vector[
:,
(2 * self.d_ssm + 2 * self.groups_time_state_size) // self.tp_size :,
] *= self.zxbcdt_multipliers[4]
self.register_buffer("mup_vector", mup_vector, persistent=False)
def forward(
self,
hidden_states: torch.Tensor,
residual: torch.Tensor | None,
**kwargs,
):
output = self.mamba(
hidden_states,
mup_vector=self.mup_vector,
)
return output, residual
class FalconH1AttentionDecoderLayer(nn.Module):
def __init__(
self,
config: FalconH1Config,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
) -> None:
super().__init__()
set_default_rope_theta(config, default_theta=1e11)
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
self.hidden_size = config.hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = config.num_attention_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = config.num_key_value_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = (
config.hidden_size // self.total_num_heads
if getattr(config, "head_dim", None) is None
else config.head_dim
)
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.max_position_embeddings = max_position_embeddings
rotary_dim = getattr(config, "attn_rotary_emb", self.head_dim)
config.rope_parameters["partial_rotary_factor"] = rotary_dim / self.head_dim
self.rotary_emb = get_rope(
head_size=self.head_dim,
max_position=max_position_embeddings,
rope_parameters=config.rope_parameters,
is_neox_style=True,
dtype=None, # see impl of get_rope
)
self.qkv_proj = QKVParallelLinear(
config.hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
config.hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
prefix=f"{prefix}.attn",
)
self.key_multiplier = config.key_multiplier
def self_attention(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
**kwargs,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
k = k * self.key_multiplier
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
output, _ = self.o_proj(attn_output)
return output
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: torch.Tensor | None,
**kwargs,
):
hidden_states = self.self_attention(
positions=positions,
hidden_states=hidden_states,
)
return hidden_states, residual
class FalconH1ParallelHybrid(nn.Module):
"""
A hybrid decoder layer for FalconH1 where the input is processed
in parallel through both the self-attention branch and the SSM (Mamba)
branch. Their outputs are then summed to produce the final hidden state.
This layer uses:
- FalconH1AttentionDecoderLayer for the multi-head self-attention branch.
- FalconH1SSMDecoderLayer for the state-space (Mamba) branch.
"""
def __init__(
self,
config: FalconH1Config,
layer_idx: int,
model_config: ModelConfig | None = None,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
) -> None:
super().__init__()
# Instantiate the attention branch
self.self_attn = FalconH1AttentionDecoderLayer(
config=config,
cache_config=cache_config,
quant_config=quant_config,
prefix=prefix,
)
# In V1 all attention/ssm layers must have
# different index in prefix
ssm_layer_idx = config.num_hidden_layers + layer_idx
ssm_prefix = prefix.split(".")[0] + f".{ssm_layer_idx}"
# Instantiate the SSM branch
self.mamba = FalconH1SSMDecoderLayer(
config=config,
model_config=model_config,
cache_config=cache_config,
quant_config=quant_config,
prefix=ssm_prefix,
)
self.ssm_out_multiplier = config.ssm_out_multiplier
self.ssm_in_multiplier = config.ssm_in_multiplier
self.attention_in_multiplier = config.attention_in_multiplier
self.attn_out_multiplier = config.attention_out_multiplier
self.feed_forward = FalconH1MLP(config, prefix=f"{prefix}.feed_forward")
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.pre_ff_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
**kwargs,
):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Process input through the attention branch.
# FalconH1AttentionDecoderLayer expects positions, hidden_states,
# kv_cache, attn_metadata, and residual.
attn_hidden, _ = self.self_attn(
positions=positions,
hidden_states=hidden_states * self.attention_in_multiplier,
residual=residual,
**kwargs,
)
# Process input through the SSM branch.
# FalconH1SSMDecoderLayer expects hidden_states, attn_metadata,
# residual, and sequence_idx.
ssm_hidden, _ = self.mamba(
hidden_states=hidden_states * self.ssm_in_multiplier,
residual=residual,
**kwargs,
)
# Sum the outputs from both branches.
# We assume both branches produce outputs of the same
# dimensionality (config.hidden_size).
hidden_states = (attn_hidden * self.attn_out_multiplier) + (
ssm_hidden * self.ssm_out_multiplier
)
hidden_states = hidden_states + residual
# feed-forward
residual = hidden_states
hidden_states = self.pre_ff_layernorm(hidden_states)
hidden_states = self.feed_forward(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
@support_torch_compile
class FalconH1Model(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config: FalconH1Config = vllm_config.model_config.hf_config
model_config = vllm_config.model_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.config = config
self.vocab_size = config.vocab_size
if get_pp_group().is_first_rank:
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
)
self.embedding_multiplier = config.embedding_multiplier
else:
self.embed_tokens = PPMissingLayer()
self.embedding_multiplier = 1.0
def get_layer(prefix: str):
layer_idx = int(prefix.rsplit(".", 1)[1])
layer_class = FalconH1ParallelHybrid
return layer_class(
config,
layer_idx,
model_config,
cache_config,
quant_config=quant_config,
prefix=prefix,
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers, get_layer, prefix=f"{prefix}.layers"
)
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size
)
if get_pp_group().is_last_rank:
self.final_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
else:
self.final_layernorm = PPMissingLayer()
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds * self.embedding_multiplier
else:
hidden_states = (
self.embed_input_ids(input_ids) * self.embedding_multiplier
)
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
for layer in islice(self.layers, self.start_layer, self.end_layer):
hidden_states = layer(
positions=positions,
hidden_states=hidden_states,
)
if not get_pp_group().is_last_rank:
return IntermediateTensors(
{
"hidden_states": hidden_states,
}
)
hidden_states = self.final_layernorm(hidden_states)
return hidden_states
class FalconH1ForCausalLM(
nn.Module,
HasInnerState,
SupportsLoRA,
SupportsPP,
IsHybrid,
SupportsMambaPrefixCaching,
):
packed_modules_mapping = {
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
"gate_up_proj": ["gate_proj", "up_proj"],
}
embedding_modules = {
"embed_tokens": "input_embeddings",
"lm_head": "output_embeddings",
}
@classmethod
def get_mamba_state_dtype_from_config(
cls,
vllm_config: "VllmConfig",
) -> tuple[torch.dtype, torch.dtype]:
return MambaStateDtypeCalculator.mamba2_state_dtype(
vllm_config.model_config.dtype,
vllm_config.cache_config.mamba_cache_dtype,
vllm_config.cache_config.mamba_ssm_cache_dtype,
)
@classmethod
def get_mamba_state_shape_from_config(
cls,
vllm_config: "VllmConfig",
) -> tuple[tuple[int, int], tuple[int, int, int]]:
"""Calculate shapes for Mamba's convolutional and state caches.
Args:
vllm_config: vLLM config
Returns:
Tuple containing:
- conv_state_shape: Shape for convolutional state cache
- temporal_state_shape: Shape for state space model cache
"""
parallel_config = vllm_config.parallel_config
hf_config = vllm_config.model_config.hf_config
intermediate_size = (
int(hf_config.mamba_expand * hf_config.hidden_size)
if hf_config.mamba_d_ssm is None
else hf_config.mamba_d_ssm
)
return MambaStateShapeCalculator.mamba2_state_shape(
intermediate_size=intermediate_size,
tp_world_size=parallel_config.tensor_parallel_size,
n_groups=hf_config.mamba_n_groups,
num_heads=hf_config.mamba_n_heads,
head_dim=hf_config.mamba_d_head,
state_size=hf_config.mamba_d_state,
conv_kernel=hf_config.mamba_d_conv,
)
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
config = vllm_config.model_config.hf_config
self.vllm_config = vllm_config
self.model_config = vllm_config.model_config
scheduler_config = vllm_config.scheduler_config
self.quant_config = vllm_config.quant_config
super().__init__()
self.config = config
self.scheduler_config = scheduler_config
self.model = FalconH1Model(
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
)
self.tie_word_embeddings = config.tie_word_embeddings
if get_pp_group().is_last_rank:
self.lm_head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
prefix=maybe_prefix(prefix, "lm_head"),
)
self.lm_head_multiplier = config.lm_head_multiplier
if self.tie_word_embeddings:
self.lm_head = self.lm_head.tie_weights(self.model.embed_tokens)
# Used to track and store by the Mamba cache between steps.
self.logits_processor = LogitsProcessor(
config.vocab_size,
config.vocab_size,
scale=config.lm_head_multiplier,
)
else:
self.lm_head = PPMissingLayer()
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors
)
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.embed_input_ids(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
**kwargs,
):
hidden_states = self.model(
input_ids,
positions,
intermediate_tensors,
inputs_embeds,
)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor | None:
logits = self.logits_processor(self.lm_head, hidden_states)
return logits
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if "A_log" in name:
name = name.replace("A_log", "A")
if "mamba" in name:
name = name.replace("mamba", "mamba.mamba")
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
if self.tie_word_embeddings and "lm_head" in name:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
if self.tie_word_embeddings:
loaded_params.add("lm_head.weight")
return loaded_params