1938 lines
82 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from abc import abstractmethod
from collections.abc import Iterable
from enum import Enum
from typing import Callable, Literal, Optional, Union, overload
import torch
import torch.nn.functional as F
from torch.nn.parameter import UninitializedParameter
import vllm.envs as envs
from vllm.config import get_current_vllm_config
from vllm.distributed import (get_dp_group, get_ep_group,
get_tensor_model_parallel_world_size,
tensor_model_parallel_all_reduce)
from vllm.distributed.eplb.eplb_state import EplbState
from vllm.forward_context import ForwardContext, get_forward_context
from vllm.logger import init_logger
from vllm.model_executor.custom_op import CustomOp
# yapf: disable
from vllm.model_executor.layers.fused_moe.config import (
FusedMoEConfig, FusedMoEParallelConfig)
# yapf: enable
from vllm.model_executor.layers.fused_moe.modular_kernel import (
FusedMoEActivationFormat, FusedMoEModularKernel,
FusedMoEPermuteExpertsUnpermute, FusedMoEPrepareAndFinalize)
from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import (
is_rocm_aiter_moe_enabled)
from vllm.model_executor.layers.fused_moe.routing_simulator import (
RoutingSimulator)
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig, QuantizeMethodBase)
from vllm.model_executor.utils import set_weight_attrs
from vllm.platforms import current_platform
from vllm.platforms.interface import CpuArchEnum
from vllm.utils import (cdiv, direct_register_custom_op, has_deep_ep, has_pplx,
round_up)
if current_platform.is_cuda_alike():
from .fused_batched_moe import BatchedTritonExperts
from .fused_moe import TritonExperts, fused_experts
if has_pplx():
from .pplx_prepare_finalize import (PplxPrepareAndFinalize,
pplx_hidden_dim_scale_bytes)
if has_deep_ep():
from .deepep_ht_prepare_finalize import DeepEPHTPrepareAndFinalize
from .deepep_ll_prepare_finalize import (DEEPEP_QUANT_BLOCK_SHAPE,
DeepEPLLPrepareAndFinalize)
else:
fused_experts = None # type: ignore
FusedMoEPermuteExpertsUnpermute = None # type: ignore
FusedMoEPrepareAndFinalize = None # type: ignore
if is_rocm_aiter_moe_enabled():
from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import ( # noqa: E501
rocm_aiter_grouped_topk as grouped_topk)
elif current_platform.is_cpu():
pass
else:
from vllm.model_executor.layers.fused_moe.fused_moe import grouped_topk
if current_platform.is_tpu():
from .moe_pallas import fused_moe as fused_moe_pallas
else:
fused_moe_pallas = None # type: ignore
logger = init_logger(__name__)
class FusedMoeWeightScaleSupported(Enum):
TENSOR = "tensor"
CHANNEL = "channel"
GROUP = "group"
BLOCK = "block"
class FusedMoEMethodBase(QuantizeMethodBase):
# TODO(bnell): also pass quant_config?
def __init__(self, moe: FusedMoEConfig):
super().__init__()
self.moe = moe
self.fused_experts: Optional[Callable] = None
self.topk_indices_dtype = None
@abstractmethod
def create_weights(self, layer: torch.nn.Module, num_experts: int,
hidden_size: int, intermediate_size_per_partition: int,
params_dtype: torch.dtype, **extra_weight_attrs):
raise NotImplementedError
def uses_weight_scale_2_pattern(self) -> bool:
"""
Returns True if this quantization method uses 'weight_scale_2' pattern
for per-tensor weight scales (e.g., FP4 variants), False otherwise.
This method should be overridden by subclasses that use the
'weight_scale_2' pattern instead of the standard 'weight_scale' pattern.
"""
return False
@staticmethod
def _maybe_make_prepare_finalize(
moe: FusedMoEConfig, ) -> Optional[FusedMoEPrepareAndFinalize]:
all2all_manager = get_ep_group().device_communicator.all2all_manager
assert all2all_manager is not None
prepare_finalize: Optional[FusedMoEPrepareAndFinalize] = None
assert not moe.use_flashinfer_cutlass_kernels, \
"Must be created in modelopt.py"
if moe.use_pplx_kernels:
hidden_dim_bytes, hidden_scale_bytes = pplx_hidden_dim_scale_bytes(
moe.max_num_tokens,
moe.hidden_dim,
moe.in_dtype,
moe.quant_dtype,
per_act_token_quant=moe.per_act_token_quant,
block_shape=moe.block_shape,
)
all_to_all_args = dict(
max_num_tokens=moe.max_num_tokens,
num_experts=moe.num_experts,
experts_per_token=moe.experts_per_token, # topk
rank=all2all_manager.rank,
world_size=all2all_manager.world_size,
# dp_size actually means tp_size, bug in pplx kernels
dp_size=all2all_manager.tp_group.world_size,
hidden_dim=moe.hidden_dim,
hidden_dim_bytes=hidden_dim_bytes,
hidden_dim_scale_bytes=hidden_scale_bytes,
)
num_dispatchers = (all2all_manager.world_size //
all2all_manager.tp_group.world_size)
# Intranode pplx a2a takes a group name while internode does not.
if not all2all_manager.internode:
all_to_all_args[
"group_name"] = all2all_manager.cpu_group.group_name
handle = all2all_manager.get_handle(all_to_all_args)
prepare_finalize = PplxPrepareAndFinalize(
handle,
max_num_tokens=moe.max_num_tokens,
num_local_experts=moe.num_local_experts,
num_dispatchers=num_dispatchers,
)
elif moe.use_deepep_ht_kernels:
assert moe.dp_size == all2all_manager.dp_world_size
all_to_all_args = dict()
handle = all2all_manager.get_handle(all_to_all_args)
prepare_finalize = DeepEPHTPrepareAndFinalize(
handle,
num_dispatchers=all2all_manager.world_size,
dp_size=all2all_manager.dp_world_size,
rank_expert_offset=all2all_manager.rank *
moe.num_local_experts,
)
elif moe.use_deepep_ll_kernels:
all_to_all_args = dict(
max_num_tokens_per_dp_rank=moe.max_num_tokens,
token_hidden_size=moe.hidden_dim,
num_ep_ranks=all2all_manager.world_size,
num_global_experts=moe.num_experts,
num_local_experts=moe.num_experts //
all2all_manager.world_size)
handle = all2all_manager.get_handle(all_to_all_args)
# Note : We may want to use FP8 dispatch even otherwise just to
# reduce datamovement
use_fp8_dispatch = (moe.quant_config is not None
and moe.quant_config.quant_dtype
== current_platform.fp8_dtype()
and moe.quant_config.block_shape
== DEEPEP_QUANT_BLOCK_SHAPE)
prepare_finalize = DeepEPLLPrepareAndFinalize(
handle,
max_tokens_per_rank=moe.max_num_tokens,
num_dispatchers=all2all_manager.world_size,
use_fp8_dispatch=use_fp8_dispatch,
)
return prepare_finalize
def maybe_make_prepare_finalize(
self,
moe: FusedMoEConfig,
) -> Optional[FusedMoEPrepareAndFinalize]:
if moe.moe_parallel_config.use_all2all_kernels:
return FusedMoEMethodBase._maybe_make_prepare_finalize(moe)
else:
return None
# Note: init_prepare_finalize should only be called by
# prepare_communication_buffer_for_model.
def init_prepare_finalize(self, layer: torch.nn.Module):
assert self.moe is not None
prepare_finalize = self.maybe_make_prepare_finalize(self.moe)
if prepare_finalize is not None:
logger.debug("%s for %s(%s)", prepare_finalize.__class__.__name__,
self, id(self))
assert self.topk_indices_dtype is None
assert self.fused_experts is None, \
f"Attempt to override experts for {id(self)}!"
self.topk_indices_dtype = prepare_finalize.topk_indices_dtype()
experts = self.select_gemm_impl(prepare_finalize, self.moe, layer)
self.fused_experts = FusedMoEModularKernel(
prepare_finalize,
experts,
layer.shared_experts,
)
def select_gemm_impl(
self,
prepare_finalize: FusedMoEPrepareAndFinalize,
moe: FusedMoEConfig,
layer: torch.nn.Module,
) -> FusedMoEPermuteExpertsUnpermute:
# based on the all2all implementation, select the appropriate
# gemm implementation
raise NotImplementedError(
f"{self.__class__.__name__} must select appropriate gemm "
"implementation based on the prepare_finalize")
@abstractmethod
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
use_grouped_topk: bool = False,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
routed_scaling_factor: float = 1.0,
e_score_correction_bias: Optional[torch.Tensor] = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
enable_eplb: bool = False,
expert_load_view: Optional[torch.Tensor] = None,
logical_to_physical_map: Optional[torch.Tensor] = None,
logical_replica_count: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
raise NotImplementedError
@CustomOp.register("unquantized_fused_moe")
class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
"""MoE method without quantization."""
def __init__(self, moe: FusedMoEConfig):
super().__init__(moe)
self.has_bias = self.moe.has_bias
self.rocm_aiter_moe_enabled = is_rocm_aiter_moe_enabled()
if self.rocm_aiter_moe_enabled:
from .rocm_aiter_fused_moe import rocm_aiter_fused_experts
self.rocm_aiter_fused_experts = rocm_aiter_fused_experts
else:
self.rocm_aiter_fused_experts = None # type: ignore
def select_gemm_impl(
self,
prepare_finalize: FusedMoEPrepareAndFinalize,
# TODO(bnell): Remove. Every layer should have an moe config object.
moe: FusedMoEConfig,
layer: torch.nn.Module,
) -> FusedMoEPermuteExpertsUnpermute:
if (prepare_finalize.activation_format ==
FusedMoEActivationFormat.BatchedExperts):
logger.debug("BatchedTritonExperts %s", self.moe)
return BatchedTritonExperts(
max_num_tokens=self.moe.max_num_tokens,
num_dispatchers=prepare_finalize.num_dispatchers(),
)
else:
logger.debug("TritonExperts %s", self.moe)
return TritonExperts()
def create_weights(self, layer: torch.nn.Module, num_experts: int,
hidden_size: int, intermediate_size_per_partition: int,
params_dtype: torch.dtype, **extra_weight_attrs):
# Fused gate_up_proj (column parallel)
w13_weight = torch.nn.Parameter(torch.empty(
num_experts,
2 * intermediate_size_per_partition,
hidden_size,
dtype=params_dtype),
requires_grad=False)
layer.register_parameter("w13_weight", w13_weight)
set_weight_attrs(w13_weight, extra_weight_attrs)
if self.has_bias:
w13_bias = torch.nn.Parameter(torch.zeros(
num_experts,
2 * intermediate_size_per_partition,
dtype=params_dtype),
requires_grad=False)
layer.register_parameter("w13_bias", w13_bias)
set_weight_attrs(w13_bias, extra_weight_attrs)
# down_proj (row parallel)
w2_weight = torch.nn.Parameter(torch.empty(
num_experts,
hidden_size,
intermediate_size_per_partition,
dtype=params_dtype),
requires_grad=False)
layer.register_parameter("w2_weight", w2_weight)
set_weight_attrs(w2_weight, extra_weight_attrs)
if self.has_bias:
w2_bias = torch.nn.Parameter(torch.zeros(num_experts,
hidden_size,
dtype=params_dtype),
requires_grad=False)
layer.register_parameter("w2_bias", w2_bias)
set_weight_attrs(w2_bias, extra_weight_attrs)
def _maybe_pad_weight(self, weight: torch.Tensor) -> torch.Tensor:
# Pad the weight tensor. This is an optimization on ROCm platform, which
# can benefit from tensors located far enough from one another in memory
if (envs.VLLM_ROCM_MOE_PADDING and current_platform.is_rocm()
and weight.stride(-1) == 1
and (weight.stride(-2) * weight.element_size()) % 512 == 0):
num_pad = 256 // weight.element_size()
weight = F.pad(weight, (0, num_pad), "constant", 0)[..., :-num_pad]
torch.cuda.empty_cache()
return weight
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
super().process_weights_after_loading(layer)
# Padding the weight for better performance on ROCm
layer.w13_weight.data = self._maybe_pad_weight(layer.w13_weight.data)
layer.w2_weight.data = self._maybe_pad_weight(layer.w2_weight.data)
# Lazy import to avoid importing triton.
from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import (
shuffle_weights)
if self.rocm_aiter_moe_enabled:
shuffled_w13, shuffled_w2 = shuffle_weights(
layer.w13_weight.data, layer.w2_weight.data)
layer.w13_weight.data = shuffled_w13
layer.w2_weight.data = shuffled_w2
if current_platform.is_xpu():
import intel_extension_for_pytorch as ipex
layer.ipex_fusion = ipex.llm.modules.GatedMLPMOE(
layer.w13_weight,
layer.w2_weight,
use_prepack=True,
)
elif current_platform.is_cpu():
from vllm.model_executor.layers.fused_moe import cpu_fused_moe
if current_platform.get_cpu_architecture() == CpuArchEnum.X86:
from vllm.model_executor.layers.utils import (
check_cpu_sgl_kernel)
dtype_w13 = layer.w13_weight.dtype
_, n_w13, k_w13 = layer.w13_weight.size()
dtype_w2 = layer.w2_weight.dtype
_, n_w2, k_w2 = layer.w2_weight.size()
if (envs.VLLM_CPU_SGL_KERNEL
and check_cpu_sgl_kernel(n_w13, k_w13, dtype_w13)
and check_cpu_sgl_kernel(n_w2, k_w2, dtype_w2)):
packed_w13_weight = torch.ops._C.convert_weight_packed(
layer.w13_weight)
assert packed_w13_weight.size() == layer.w13_weight.size()
layer.w13_weight.copy_(packed_w13_weight)
del packed_w13_weight
packed_w2_weight = torch.ops._C.convert_weight_packed(
layer.w2_weight)
assert packed_w2_weight.size() == layer.w2_weight.size()
layer.w2_weight.copy_(packed_w2_weight)
layer.cpu_fused_moe = cpu_fused_moe.SGLFusedMOE(layer)
else:
layer.cpu_fused_moe = cpu_fused_moe.IPEXFusedMOE(layer)
else:
layer.cpu_fused_moe = cpu_fused_moe.CPUFusedMOE(layer)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
use_grouped_topk: bool = False,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
routed_scaling_factor: float = 1.0,
e_score_correction_bias: Optional[torch.Tensor] = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
enable_eplb: bool = False,
expert_load_view: Optional[torch.Tensor] = None,
logical_to_physical_map: Optional[torch.Tensor] = None,
logical_replica_count: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
if enable_eplb:
assert expert_load_view is not None
assert logical_to_physical_map is not None
assert logical_replica_count is not None
assert isinstance(layer, FusedMoE)
return self.forward(
x=x,
layer=layer,
router_logits=router_logits,
top_k=top_k,
renormalize=renormalize,
use_grouped_topk=use_grouped_topk,
topk_group=topk_group,
num_expert_group=num_expert_group,
global_num_experts=global_num_experts,
expert_map=expert_map,
custom_routing_function=custom_routing_function,
scoring_func=scoring_func,
routed_scaling_factor=routed_scaling_factor,
e_score_correction_bias=e_score_correction_bias,
activation=activation,
apply_router_weight_on_input=apply_router_weight_on_input,
enable_eplb=enable_eplb,
expert_load_view=expert_load_view,
logical_to_physical_map=logical_to_physical_map,
logical_replica_count=logical_replica_count,
)
def forward_cuda(
self,
layer: torch.nn.Module,
x: torch.Tensor,
use_grouped_topk: bool,
top_k: int,
router_logits: torch.Tensor,
renormalize: bool,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
routed_scaling_factor: float = 1.0,
e_score_correction_bias: Optional[torch.Tensor] = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
enable_eplb: bool = False,
expert_load_view: Optional[torch.Tensor] = None,
logical_to_physical_map: Optional[torch.Tensor] = None,
logical_replica_count: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
topk_weights, topk_ids = FusedMoE.select_experts(
hidden_states=x,
router_logits=router_logits,
use_grouped_topk=use_grouped_topk,
top_k=top_k,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
custom_routing_function=custom_routing_function,
scoring_func=scoring_func,
routed_scaling_factor=routed_scaling_factor,
e_score_correction_bias=e_score_correction_bias,
indices_type=self.topk_indices_dtype,
enable_eplb=enable_eplb,
expert_map=expert_map,
expert_load_view=expert_load_view,
logical_to_physical_map=logical_to_physical_map,
logical_replica_count=logical_replica_count)
if self.rocm_aiter_moe_enabled:
return self.rocm_aiter_fused_experts(
hidden_states=x,
w1=layer.w13_weight,
w2=layer.w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
expert_map=expert_map,
activation=activation,
apply_router_weight_on_input=apply_router_weight_on_input)
elif self.fused_experts is not None:
if self.has_bias:
raise ValueError(
"FusedMoEModularKernel does not support bias.")
return self.fused_experts(
hidden_states=x,
w1=layer.w13_weight,
w2=layer.w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
inplace=True,
activation=activation,
apply_router_weight_on_input=apply_router_weight_on_input,
global_num_experts=global_num_experts,
expert_map=expert_map,
)
else:
assert fused_experts is not None
return fused_experts(
hidden_states=x,
w1=layer.w13_weight,
w2=layer.w2_weight,
w1_bias=layer.w13_bias if self.has_bias else None,
w2_bias=layer.w2_bias if self.has_bias else None,
topk_weights=topk_weights,
topk_ids=topk_ids,
inplace=True,
activation=activation,
apply_router_weight_on_input=apply_router_weight_on_input,
global_num_experts=global_num_experts,
expert_map=expert_map,
)
def forward_cpu(
self,
layer: torch.nn.Module,
x: torch.Tensor,
use_grouped_topk: bool,
top_k: int,
router_logits: torch.Tensor,
renormalize: bool,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
routed_scaling_factor: float = 1.0,
e_score_correction_bias: Optional[torch.Tensor] = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
enable_eplb: bool = False,
expert_load_view: Optional[torch.Tensor] = None,
logical_to_physical_map: Optional[torch.Tensor] = None,
logical_replica_count: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
if enable_eplb is not False or expert_load_view is not None or \
logical_to_physical_map is not None or \
logical_replica_count is not None:
raise NotImplementedError("Expert load balancing is not supported "
"for CPU.")
return layer.cpu_fused_moe(
layer,
x,
use_grouped_topk,
top_k,
router_logits,
renormalize,
topk_group,
num_expert_group,
global_num_experts,
expert_map,
custom_routing_function,
scoring_func,
routed_scaling_factor,
e_score_correction_bias,
apply_router_weight_on_input,
activation,
)
def forward_xpu(
self,
layer: torch.nn.Module,
x: torch.Tensor,
use_grouped_topk: bool,
top_k: int,
router_logits: torch.Tensor,
renormalize: bool,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
routed_scaling_factor: float = 1.0,
e_score_correction_bias: Optional[torch.Tensor] = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
enable_eplb: bool = False,
expert_load_view: Optional[torch.Tensor] = None,
logical_to_physical_map: Optional[torch.Tensor] = None,
logical_replica_count: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
if enable_eplb is not False or expert_load_view is not None or \
logical_to_physical_map is not None or \
logical_replica_count is not None:
raise NotImplementedError("Expert load balancing is not supported "
"for XPU.")
assert custom_routing_function is None
return layer.ipex_fusion(
x,
use_grouped_topk,
top_k,
router_logits,
renormalize,
topk_group,
num_expert_group,
)
def forward_tpu(
self,
layer: torch.nn.Module,
x: torch.Tensor,
use_grouped_topk: bool,
top_k: int,
router_logits: torch.Tensor,
renormalize: bool,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
routed_scaling_factor: float = 1.0,
e_score_correction_bias: Optional[torch.Tensor] = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
enable_eplb: bool = False,
expert_load_view: Optional[torch.Tensor] = None,
logical_to_physical_map: Optional[torch.Tensor] = None,
logical_replica_count: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
assert not use_grouped_topk
assert num_expert_group is None
assert topk_group is None
assert custom_routing_function is None
assert apply_router_weight_on_input is False
if scoring_func != "softmax":
raise NotImplementedError(
"Only softmax scoring function is supported for TPU.")
if e_score_correction_bias is not None:
raise NotImplementedError(
"Expert score correction bias is not supported for TPU.")
assert activation == "silu", f"{activation} is not supported for TPU."
assert routed_scaling_factor == 1.0, \
f"routed_scaling_factor {routed_scaling_factor} is not supported " \
f"for TPU."
if enable_eplb is not False or expert_load_view is not None or \
logical_to_physical_map is not None or \
logical_replica_count is not None:
raise NotImplementedError("Expert load balancing is not supported "
"for TPU.")
return fused_moe_pallas(hidden_states=x,
w1=layer.w13_weight,
w2=layer.w2_weight,
topk=top_k,
gating_output=router_logits,
global_num_experts=global_num_experts,
expert_map=expert_map,
renormalize=renormalize)
if current_platform.is_tpu():
forward_native = forward_tpu
elif current_platform.is_cpu():
forward_native = forward_cpu
elif current_platform.is_xpu():
forward_native = forward_xpu
else:
forward_native = forward_cuda
def determine_expert_map(
ep_size: int, ep_rank: int,
global_num_experts: int) -> tuple[int, Optional[torch.Tensor]]:
"""
Calculates how many experts should be assigned to each rank for EP and
creates a mapping from global to local expert index. Experts are
distributed evenly across ranks. Any remaining are assigned to the
last rank.
Args:
ep_size (int): The size of the expert parallel group
global_num_experts (int): The total number of experts in the model.
Returns:
tuple[int, Optional[torch.Tensor]]: A tuple containing:
- local_num_experts (int): The number of experts assigned
to the current rank.
- expert_map (Optional[torch.Tensor]): A tensor of shape
(global_num_experts,) mapping from global to local index.
Contains -1 for experts not assigned to the current rank.
Returns None if ep_size is 1.
"""
assert ep_size > 0
if ep_size == 1:
return (global_num_experts, None)
# Distribute experts as evenly as possible to each rank.
base_experts = global_num_experts // ep_size
remainder = global_num_experts % ep_size
if ep_rank < remainder:
local_num_experts = base_experts + 1
else:
local_num_experts = base_experts
# Create a tensor of size num_experts filled with -1
expert_map = torch.full((global_num_experts, ), -1, dtype=torch.int32)
# Create an expert map for the local experts
start_idx = ep_rank * base_experts + min(ep_rank, remainder)
expert_map[start_idx:start_idx + local_num_experts] = torch.arange(
0, local_num_experts, dtype=torch.int32)
return (local_num_experts, expert_map)
def get_compressed_expert_map(expert_map: torch.Tensor) -> str:
"""
Compresses the expert map by removing any -1 entries.
Args:
expert_map (torch.Tensor): A tensor of shape (global_num_experts,)
mapping from global to local index. Contains -1 for experts not
assigned to the current rank.
Returns:
str: A string mapping from local to global index.
Using str to support hashing for logging once only.
"""
global_indices = torch.where(expert_map != -1)[0]
local_indices = expert_map[global_indices]
return ", ".join(
f"{local_index.item()}->{global_index.item()}"
for local_index, global_index in zip(local_indices, global_indices))
@CustomOp.register("fused_moe")
class FusedMoE(CustomOp):
"""FusedMoE layer for MoE models.
This layer contains both MergedColumnParallel weights (gate_up_proj /
w13) and RowParallelLinear weights (down_proj/ w2).
Note: Mixtral uses w1, w2, and w3 for gate, up, and down_proj. We
copy that naming convention here and handle any remapping in the
load_weights function in each model implementation.
Args:
num_experts: Number of experts in the model
top_k: Number of experts selected for each token
hidden_size: Input hidden state size of the transformer
intermediate_size: Intermediate size of the experts
params_dtype: Data type for the parameters.
reduce_results: Whether to all all_reduce on the output of the layer
renomalize: Whether to renormalize the logits in the fused_moe kernel
quant_config: Quantization configure.
enable_eplb: Whether to enable expert parallelism load balancer.
"""
def __init__(
self,
num_experts: int, # Global number of experts
top_k: int,
hidden_size: int,
intermediate_size: int,
params_dtype: Optional[torch.dtype] = None,
reduce_results: bool = False,
renormalize: bool = True,
use_grouped_topk: bool = False,
num_expert_group: Optional[int] = None,
topk_group: Optional[int] = None,
quant_config: Optional[QuantizationConfig] = None,
tp_size: Optional[int] = None,
ep_size: Optional[int] = None,
dp_size: Optional[int] = None,
prefix: str = "",
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
routed_scaling_factor: float = 1.0,
e_score_correction_bias: Optional[torch.Tensor] = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
enable_eplb: bool = False,
num_redundant_experts: int = 0,
has_bias: bool = False,
is_sequence_parallel=False,
):
super().__init__()
if params_dtype is None:
params_dtype = torch.get_default_dtype()
self.params_dtype = params_dtype
tp_size_ = (tp_size if tp_size is not None else
get_tensor_model_parallel_world_size())
dp_size_ = (dp_size
if dp_size is not None else get_dp_group().world_size)
self.is_sequence_parallel = is_sequence_parallel
if self.is_sequence_parallel:
self.sp_size = tp_size_
vllm_config = get_current_vllm_config()
self.moe_parallel_config: FusedMoEParallelConfig = (
FusedMoEParallelConfig.make(
tp_size_=tp_size_,
dp_size_=dp_size_,
vllm_parallel_config=vllm_config.parallel_config))
self.global_num_experts = num_experts + num_redundant_experts
# we are padding globally so EP buffer allocation works
if quant_config and quant_config.get_name() == "mxfp4":
from vllm.model_executor.layers.quantization.mxfp4 import ( # noqa: E501
should_use_flashinfer_mxfp4)
if current_platform.is_rocm() or should_use_flashinfer_mxfp4():
hidden_size = round_up(hidden_size, 256)
# For smuggling this layer into the fused moe custom op
compilation_config = vllm_config.compilation_config
if prefix in compilation_config.static_forward_context:
raise ValueError("Duplicate layer name: {}".format(prefix))
compilation_config.static_forward_context[prefix] = self
self.layer_name = prefix
self.enable_eplb = enable_eplb
self.expert_load_view: Optional[torch.Tensor] = None
self.logical_to_physical_map: Optional[torch.Tensor] = None
self.logical_replica_count: Optional[torch.Tensor] = None
# Determine expert maps
if self.use_ep:
if self.enable_eplb:
assert self.global_num_experts % self.ep_size == 0, \
"EPLB currently only supports even distribution of " \
"experts across ranks."
else:
assert num_redundant_experts == 0, \
"Redundant experts are only supported with EPLB."
self.local_num_experts, self.expert_map = determine_expert_map(
ep_size=self.ep_size,
ep_rank=self.ep_rank,
global_num_experts=self.global_num_experts)
logger.info_once(
"[EP Rank %s/%s] Expert parallelism is enabled. Local/global"
" number of experts: %s/%s. Experts local to global index map:"
" %s.", self.ep_rank, self.ep_size, self.local_num_experts,
self.global_num_experts,
get_compressed_expert_map(self.expert_map))
else:
self.local_num_experts, self.expert_map = (self.global_num_experts,
None)
self.top_k = top_k
assert intermediate_size % self.tp_size == 0
self.hidden_size = hidden_size
self.intermediate_size_per_partition = intermediate_size // self.tp_size
self.reduce_results = reduce_results
self.renormalize = renormalize
self.use_grouped_topk = use_grouped_topk
if self.use_grouped_topk:
assert num_expert_group is not None and topk_group is not None
self.num_expert_group = num_expert_group
self.topk_group = topk_group
self.custom_routing_function = custom_routing_function
self.scoring_func = scoring_func
self.routed_scaling_factor = routed_scaling_factor
self.e_score_correction_bias = e_score_correction_bias
self.apply_router_weight_on_input = apply_router_weight_on_input
self.activation = activation
if self.scoring_func != "softmax" and not self.use_grouped_topk:
raise ValueError("Only softmax scoring function is supported for "
"non-grouped topk.")
if vllm_config.model_config is not None:
model_dtype = vllm_config.model_config.dtype
else:
# TODO (bnell): This is a hack to get test_mixtral_moe to work
# since model_config is not set in the pytest test.
model_dtype = params_dtype
moe = FusedMoEConfig.make(num_experts=self.global_num_experts,
experts_per_token=top_k,
hidden_dim=hidden_size,
num_local_experts=self.local_num_experts,
moe_parallel_config=self.moe_parallel_config,
in_dtype=model_dtype,
max_num_tokens=envs.VLLM_MOE_DP_CHUNK_SIZE,
quant_config=quant_config,
has_bias=has_bias)
self.moe_config = moe
self.quant_config = quant_config
# Note: get_quant_method will look at the layer's local_num_experts
# for heuristic purposes, so it must be initialized first.
quant_method: Optional[QuantizeMethodBase] = None
quant_method = (UnquantizedFusedMoEMethod(moe) if quant_config is None
else quant_config.get_quant_method(self, prefix))
assert quant_method is not None
assert isinstance(quant_method, FusedMoEMethodBase)
self.quant_method = quant_method
if self.enable_eplb:
from vllm.model_executor.layers.quantization.fp8 import (
Fp8MoEMethod)
if not isinstance(quant_method,
(Fp8MoEMethod, UnquantizedFusedMoEMethod)):
# TODO: Add support for additional quantization methods.
# The implementation for other quantization methods does not
# contain essential differences, but the current quant API
# design causes duplicated work when extending to new
# quantization methods, so I'm leaving it for now.
# If you plan to add support for more quantization methods,
# please refer to the implementation in `Fp8MoEMethod`.
raise NotImplementedError("EPLB is only supported for FP8 "
"quantization for now.")
moe_quant_params = {
"num_experts": self.local_num_experts,
"hidden_size": hidden_size,
"intermediate_size_per_partition":
self.intermediate_size_per_partition,
"params_dtype": params_dtype,
"weight_loader": self.weight_loader,
}
# need full intermediate size pre-sharding for WNA16 act order
if (self.quant_method.__class__.__name__
in ("GPTQMarlinMoEMethod",
"CompressedTensorsWNA16MarlinMoEMethod",
"CompressedTensorsWNA16MoEMethod")):
moe_quant_params["intermediate_size_full"] = intermediate_size
self.quant_method.create_weights(layer=self, **moe_quant_params)
# Chunked all2all staging tensor
self.batched_hidden_states: Optional[torch.Tensor] = None
self.batched_router_logits: Optional[torch.Tensor] = None
if (self.moe_parallel_config.use_pplx_kernels
or self.moe_parallel_config.use_deepep_ll_kernels
or self.moe_config.use_flashinfer_cutlass_kernels):
self.batched_hidden_states = torch.zeros(
(moe.max_num_tokens, self.hidden_size),
dtype=moe.in_dtype,
device=torch.cuda.current_device())
# Note here we use `num_experts` which is logical expert count
self.batched_router_logits = torch.zeros(
(moe.max_num_tokens, num_experts),
dtype=moe.in_dtype,
device=torch.cuda.current_device())
@property
def shared_experts(self) -> Optional[torch.nn.Module]:
return None
@property
def tp_size(self):
return self.moe_parallel_config.tp_size
@property
def dp_size(self):
return self.moe_parallel_config.dp_size
@property
def ep_size(self):
return self.moe_parallel_config.ep_size
@property
def tp_rank(self):
return self.moe_parallel_config.tp_rank
@property
def dp_rank(self):
return self.moe_parallel_config.dp_rank
@property
def ep_rank(self):
return self.moe_parallel_config.ep_rank
@property
def use_ep(self):
return self.moe_parallel_config.use_ep
@property
def use_pplx_kernels(self):
return self.moe_parallel_config.use_pplx_kernels
@property
def use_deepep_ht_kernels(self):
return self.moe_parallel_config.use_deepep_ht_kernels
@property
def use_deepep_ll_kernels(self):
return self.moe_parallel_config.use_deepep_ll_kernels
@property
def use_flashinfer_cutlass_kernels(self):
return self.moe_config.use_flashinfer_cutlass_kernels
def update_expert_map(self):
# ep_size and ep_rank should already be updated
assert self.expert_map is not None
with self.expert_map.device:
self.local_num_experts, self.expert_map = determine_expert_map(
ep_size=self.ep_size,
ep_rank=self.ep_rank,
global_num_experts=self.global_num_experts)
def _load_per_tensor_weight_scale(self, shard_id: str,
param: torch.nn.Parameter,
loaded_weight: torch.Tensor,
expert_id: int):
param_data = param.data
# for per tensor weight quantization
if shard_id in ("w1", "w3"):
# We have to keep the weight scales of w1 and w3 because
# we need to re-quantize w1/w3 weights after weight loading.
idx = 0 if shard_id == "w1" else 1
param_data[expert_id][idx] = loaded_weight
# If we are in the row parallel case (down_proj)
elif shard_id == "w2":
param_data[expert_id] = loaded_weight
def _load_combined_w13_weight_scale(self, shard_dim: int,
loaded_weight: torch.Tensor,
param: torch.Tensor, tp_rank: int):
"""
Load w13 weight scales assuming that w1 weight scales and w3 weight
scales are stored in the same loaded_weight tensor.
"""
shard_size = param.shape[shard_dim]
loaded_weight = loaded_weight.narrow(shard_dim, shard_size * tp_rank,
shard_size)
param.copy_(loaded_weight)
def _load_model_weight_or_group_weight_scale(self,
shard_dim: int,
expert_data: torch.Tensor,
shard_id: str,
loaded_weight: torch.Tensor,
tp_rank: int,
load_full_w2: bool = False):
"""
Load grouped weight scales for group quantization or model weights
:param shard_dim: dimension to shard
:param expert_data: parameter for a particular expert
:param shard_id: either w1, w2, or w3
:param loaded_weight: checkpoint weight to load into the param
:param tp_rank: tensor parallel rank
:param load_full_w2: whether or not the w2 loaded should be sharded.
"""
if shard_id == "w2":
# In the case where we have actorder/g_idx, we do not partition the
# w2 scales, as indicated by `load_full` argument, for all tp cases
self._load_w2(shard_dim=shard_dim,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=tp_rank,
load_full=load_full_w2)
elif shard_id in ("w1", "w3"):
self._load_w13(shard_id=shard_id,
shard_dim=shard_dim,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=tp_rank)
def _load_per_channel_weight_scale(self, expert_data: torch.Tensor,
shard_dim: int, shard_id: str,
loaded_weight: torch.Tensor,
tp_rank: int):
# for per channel weight quantization
if shard_id == "w2":
expert_data.copy_(loaded_weight)
elif shard_id in ("w1", "w3"):
self._load_w13(shard_id=shard_id,
shard_dim=shard_dim,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=tp_rank)
def _load_w13(self,
expert_data: torch.Tensor,
shard_dim: int,
shard_id: str,
loaded_weight: torch.Tensor,
tp_rank: int,
load_full: bool = False):
# Index the loaded weight for tp sharding.
# gate_up_proj: "MergedColumnParallel", so tp sharding on output_dim
shard_size = expert_data.shape[shard_dim] // 2
if not load_full:
loaded_weight = loaded_weight.narrow(shard_dim,
shard_size * tp_rank,
shard_size)
# Narrow parameter and load.
# w1, gate_proj: Load into first logical weight of w13.
if shard_id == "w1":
expert_data = expert_data.narrow(shard_dim, 0, shard_size)
# w3, up_proj: Load into second logical weight of w13.
else:
assert shard_id == "w3"
expert_data = expert_data.narrow(shard_dim, shard_size, shard_size)
expert_data.copy_(loaded_weight)
def _load_w2(self,
expert_data: torch.Tensor,
shard_dim: int,
loaded_weight: torch.Tensor,
tp_rank: int,
load_full: bool = False):
# Index the loaded weight for tp sharding.
# down_proj: "RowParallel" so tp sharding on input_dim
# Narrow parameter and load.
shard_size = expert_data.shape[shard_dim]
if not load_full:
loaded_weight = loaded_weight.narrow(shard_dim,
shard_size * tp_rank,
shard_size)
# w2, down_proj: Load into only logical weight of w2.
expert_data.copy_(loaded_weight)
def _load_single_value(self, param: torch.nn.Parameter,
loaded_weight: torch.Tensor, expert_id: int):
param_data = param.data
# Input scales can be loaded directly and should be equal.
param_data[expert_id] = loaded_weight
def _load_g_idx(self, shard_id: str, expert_data: torch.Tensor,
shard_dim: int, loaded_weight: torch.Tensor, tp_rank: int):
if shard_id == "w2":
self._load_w2(shard_dim=shard_dim,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=tp_rank)
else:
assert shard_id in ("w1", "w3")
expert_data.copy_(loaded_weight)
def _map_global_expert_id_to_local_expert_id(self, expert_id: int) -> int:
if self.expert_map is None:
return expert_id
return self.expert_map[expert_id].item()
@overload
def weight_loader(self, param: torch.nn.Parameter,
loaded_weight: torch.Tensor, weight_name: str,
shard_id: str, expert_id: int,
return_success: Literal[False]) -> None:
...
@overload
def weight_loader(self, param: torch.nn.Parameter,
loaded_weight: torch.Tensor, weight_name: str,
shard_id: str, expert_id: int,
return_success: Literal[True]) -> bool:
...
def weight_loader(self,
param: torch.nn.Parameter,
loaded_weight: torch.Tensor,
weight_name: str,
shard_id: str,
expert_id: int,
return_success: bool = False) -> Optional[bool]:
if self.quant_config and self.quant_config.get_name() == "mxfp4":
# (FIXME) for gpt-oss all experts are combined
if "bias" in weight_name:
dim1 = loaded_weight.shape[1]
param.data[:, :dim1].copy_(loaded_weight)
else:
dim1 = loaded_weight.shape[1]
dim2 = loaded_weight.shape[2]
param.data[:, :dim1, :dim2].copy_(loaded_weight)
return True if return_success else None
expert_id = self._map_global_expert_id_to_local_expert_id(expert_id)
if expert_id == -1:
# Failed to load this param since it's not local to this rank
return False if return_success else None
# Hereafter, `expert_id` is local physical id
quant_method_name = self.quant_method.__class__.__name__
# compressed-tensors checkpoints with packed weights are stored flipped
# TODO (mgoin): check self.quant_method.quant_config.quant_format
# against known CompressionFormat enum values that have this quality
if self.quant_method.__class__.__name__ in (
"CompressedTensorsWNA16MarlinMoEMethod",
"CompressedTensorsWNA16MoEMethod"):
loaded_weight = loaded_weight.t().contiguous()
if shard_id not in ("w1", "w2", "w3"):
raise ValueError(f"shard_id must be ['w1','w2','w3'] but "
f"got {shard_id}.")
# Fetch the dim to shard the parameter/loaded weight
# based on the shard id. This will be whatever
# dimension intermediate_size_per_partition is used.
SHARD_ID_TO_SHARDED_DIM = {"w1": 0, "w2": 1, "w3": 0}
is_gguf_weight = getattr(param, "is_gguf_weight", False)
is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
if is_gguf_weight_type:
param.weight_type = loaded_weight.item()
param.data.copy_(loaded_weight)
return True if return_success else None
# Case for BitsAndBytes
use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
if use_bitsandbytes_4bit:
shard_dim = 0
expert_data = param.data[expert_id]
if shard_id == "w2":
expert_data.copy_(loaded_weight)
elif shard_id in ("w1", "w3"):
# BNB inflight quantization has already sharded the weights
full_load = True
self._load_w13(
shard_id=shard_id,
shard_dim=shard_dim,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=self.tp_rank,
load_full=full_load,
)
return True if return_success else None
# is_transposed: if the dim to shard the weight
# should be flipped. Required by GPTQ, compressed-tensors
# should be whatever dimension intermediate_size_per_partition is
is_transposed = getattr(param, "is_transposed", False)
shard_dim = SHARD_ID_TO_SHARDED_DIM[shard_id]
if is_transposed:
shard_dim = int(not shard_dim)
full_load = len(loaded_weight.shape) == 3
if full_load:
shard_dim += 1
# Materialize GGUF UninitializedParameter
if is_gguf_weight and isinstance(param, UninitializedParameter):
final_shape = list(loaded_weight.shape)
if shard_id in ["w1", "w3"]:
final_shape[1] *= 2
final_shape[shard_dim] = final_shape[shard_dim] // self.tp_size
param.materialize(final_shape, dtype=loaded_weight.dtype)
expert_data = param.data if full_load else param.data[expert_id]
# Case input scale: input_scale loading is only supported for fp8
if "input_scale" in weight_name:
# this is needed for compressed-tensors only
loaded_weight = loaded_weight.to(param.data.device)
if ("compressed" in quant_method_name.lower()
and param.data[expert_id] != 1
and (param.data[expert_id] - loaded_weight).abs() > 1e-5):
raise ValueError(
"input_scales of w1 and w3 of a layer "
f"must be equal. But got {param.data[expert_id]} "
f"vs. {loaded_weight}")
self._load_single_value(param=param,
loaded_weight=loaded_weight,
expert_id=expert_id)
return True if return_success else None
# Case g_idx
if "g_idx" in weight_name:
self._load_g_idx(shard_dim=0,
shard_id=shard_id,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=self.tp_rank)
return True if return_success else None
# TODO @dsikka: ModelOpt should follow the proper MoE loading pattern
if "ModelOpt" in quant_method_name:
# Determine per-tensor weight scale patterns based on variant
# Use the dedicated method instead of brittle string matching
uses_weight_scale_2 = self.quant_method.uses_weight_scale_2_pattern(
)
# Call _load_per_tensor_weight_scale() to load per-tensor (scalar)
# weights scales.
# Input scales are always per-tensor.
# Weight scales: FP4 uses "weight_scale_2" and FP8 uses
# "weight_scale" for per-tensor scales.
is_per_tensor = ("weight_scale_2" in weight_name
if uses_weight_scale_2 else "weight_scale"
in weight_name) or "input_scale" in weight_name
if is_per_tensor:
self._load_per_tensor_weight_scale(
shard_id=shard_id,
param=param,
loaded_weight=loaded_weight,
expert_id=expert_id,
)
return True if return_success else None
# If the weight is w13_weight_scale and w13_weight_scales are
# combined into single loaded_weight, call
# _load_combined_w13_weight_scale() to load it.
# This is checked by comparing the hidden_out dims of the
# loaded_weight and the param.
if "w13_weight_scale" in weight_name:
loaded_weight_hidden_out = loaded_weight.shape[-2]
param_hidden_out = param.data.shape[-2] * self.tp_size
if loaded_weight_hidden_out == param_hidden_out:
self._load_combined_w13_weight_scale(
shard_dim=shard_dim,
loaded_weight=loaded_weight,
param=param,
tp_rank=self.tp_rank,
)
return True if return_success else None
# For other weights, call _load_model_weight_or_group_weight_scale()
# to load it.
if "weight" in weight_name:
self._load_model_weight_or_group_weight_scale(
shard_id=shard_id,
shard_dim=shard_dim,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=self.tp_rank)
return True if return_success else None
# Case weight scales, zero_points and offset, weight/input global scales
if ("scale" in weight_name or "zero" in weight_name
or "offset" in weight_name):
# load the weight scales and zp based on the quantization scheme
# supported weight scales/zp can be found in
# FusedMoeWeightScaleSupported
# TODO @dsikka: once hardened, refactor to use vLLM Parameters
# specific to each case
quant_method = getattr(param, "quant_method", None)
if quant_method == FusedMoeWeightScaleSupported.CHANNEL.value:
self._load_per_channel_weight_scale(
shard_id=shard_id,
shard_dim=shard_dim,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=self.tp_rank)
elif quant_method in [
FusedMoeWeightScaleSupported.GROUP.value,
FusedMoeWeightScaleSupported.BLOCK.value,
]:
self._load_model_weight_or_group_weight_scale(
shard_id=shard_id,
shard_dim=shard_dim,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=self.tp_rank,
load_full_w2=getattr(param, "load_full_w2", False))
elif quant_method == FusedMoeWeightScaleSupported.TENSOR.value:
self._load_per_tensor_weight_scale(shard_id=shard_id,
param=param,
loaded_weight=loaded_weight,
expert_id=expert_id)
else:
WEIGHT_SCALE_SUPPORTED = [
e.value for e in FusedMoeWeightScaleSupported
]
raise ValueError(
f"quant method must be one of {WEIGHT_SCALE_SUPPORTED}")
return True if return_success else None
# Case weight_shape
if "weight_shape" in weight_name:
# only required by compressed-tensors
self._load_single_value(param=param,
loaded_weight=loaded_weight,
expert_id=expert_id)
return True if return_success else None
# Case model weights
if "weight" in weight_name:
self._load_model_weight_or_group_weight_scale(
shard_id=shard_id,
shard_dim=shard_dim,
loaded_weight=loaded_weight,
expert_data=expert_data,
tp_rank=self.tp_rank)
return True if return_success else None
return False if return_success else None
def get_expert_weights(self) -> Iterable[torch.Tensor]:
weights = list(self.named_parameters())
assert all(weight.is_contiguous() for _, weight in weights)
# Filter out the non-expert weights.
# `e_score_correction_bias` is a bias for each logical expert,
# with shape (num_logical_experts,), not an expert weight.
NON_EXPERT_WEIGHTS = {
"e_score_correction_bias",
}
return [
weight.view(self.local_num_experts, -1) for name, weight in weights
if name not in NON_EXPERT_WEIGHTS
and not name.startswith("_shared_experts.")
]
def set_eplb_state(
self,
moe_layer_idx: int,
expert_load_view: torch.Tensor,
logical_to_physical_map: torch.Tensor,
logical_replica_count: torch.Tensor,
) -> None:
"""
Register the EPLB state in this layer.
This is used later in forward pass, where we get the expert mapping
and record the load metrics in `expert_load_view`.
"""
self.expert_load_view = expert_load_view[moe_layer_idx]
self.logical_to_physical_map = logical_to_physical_map[moe_layer_idx]
self.logical_replica_count = logical_replica_count[moe_layer_idx]
@staticmethod
def select_experts(
hidden_states: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
use_grouped_topk: bool,
renormalize: bool,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
routed_scaling_factor: float = 1.0,
e_score_correction_bias: Optional[torch.Tensor] = None,
indices_type: Optional[torch.dtype] = None,
enable_eplb: bool = False,
expert_map: Optional[torch.Tensor] = None,
expert_load_view: Optional[torch.Tensor] = None,
logical_to_physical_map: Optional[torch.Tensor] = None,
logical_replica_count: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Route the input hidden states to the top-k experts based on the
router logits.
Returns:
(topk_weights, topk_ids) (tuple[torch.Tensor, torch.Tensor]):
The weights and *global physical* expert ids of the top-k experts.
**Compatibility**: When EPLB is not enabled, the returned ids are
equivalent to global logical ids, so should be compatible with
plain MoE implementations without redundant experts.
"""
from vllm.model_executor.layers.fused_moe.fused_moe import fused_topk
# Check if we should use a routing simulation strategy
routing_strategy = envs.VLLM_MOE_ROUTING_SIMULATION_STRATEGY
if routing_strategy != "":
return RoutingSimulator.simulate_routing(
hidden_states=hidden_states,
router_logits=router_logits,
strategy_name=routing_strategy,
top_k=top_k,
indices_type=indices_type)
# DeepSeekv2 uses grouped_top_k
if use_grouped_topk:
assert topk_group is not None
assert num_expert_group is not None
topk_weights, topk_ids = grouped_topk(
hidden_states=hidden_states,
gating_output=router_logits,
topk=top_k,
renormalize=renormalize,
num_expert_group=num_expert_group,
topk_group=topk_group,
scoring_func=scoring_func,
routed_scaling_factor=routed_scaling_factor,
e_score_correction_bias=e_score_correction_bias)
if indices_type is not None:
topk_ids = topk_ids.to(dtype=indices_type)
elif custom_routing_function is None:
topk_weights, topk_ids, token_expert_indices = fused_topk(
hidden_states=hidden_states,
gating_output=router_logits,
topk=top_k,
renormalize=renormalize,
indices_type=indices_type,
)
else:
topk_weights, topk_ids = custom_routing_function(
hidden_states=hidden_states,
gating_output=router_logits,
topk=top_k,
renormalize=renormalize)
if indices_type is not None:
topk_ids = topk_ids.to(dtype=indices_type)
if enable_eplb:
assert expert_load_view is not None
assert logical_to_physical_map is not None
assert logical_replica_count is not None
# 1. Convert the logical expert ids to physical expert ids
# Directly select a random replica for each logical expert
# TODO: maybe optimize this by using specified kernels,
# or compute pseudo-random indices by modulo
# In case `indices_type` is not `torch.long` or `torch.int`,
# e.g. `torch.uint32` as required by dispatch/combine kernels
topk_ids_long = topk_ids.long()
replica_indices = (
torch.rand_like(topk_ids, dtype=torch.float) *
logical_replica_count[topk_ids_long]).long().unsqueeze(-1)
physical_ids = logical_to_physical_map[topk_ids_long].gather(
-1, replica_indices).squeeze(-1)
topk_ids = physical_ids
# 2. Record expert load metrics.
# TODO(bowen): When using `FusedMoEModularKernel`, this
# can be done in a more unified way, since
# `FusedMoEPrepareAndFinalize` will return the expert
# token count, in some cases directly from the kernel.
# However, now there are many code paths not using
# the modular kernel, e.g. calling `fused_experts`,
# so we decide to keep the logic here.
#
# If later refactor moved all the MoE kernel calls
# to the modular kernel, we can move this logic there
# to achieve better efficiency.
# `expert_load_view`: (num_physical_experts,)
topk_ids_flatten = topk_ids.flatten()
# Performance optimization:
# `masked_fill` is significantly faster than `masked_select`
invalid_mask = topk_ids_flatten < 0
# Replace invalid expert ids with 0 (just a dummy position)
# to avoid out-of-bounds errors in scatter_add_
index = topk_ids_flatten.masked_fill_(invalid_mask, 0)
# `src` is the valid mask, which is 1 for valid and 0 for invalid
src = ~invalid_mask
expert_load_view.scatter_add_(dim=0,
index=index.long(),
src=src.to(expert_load_view))
topk_ids = topk_ids.to(dtype=indices_type)
assert topk_ids.dtype == indices_type or indices_type is None
return topk_weights, topk_ids
def must_reduce_shared_expert_outputs(self) -> bool:
"""
The shared_experts are typically computed using the RowParallelLinear
layer. The result of this function is typically used as
the reduce_results argument to the module.
When just tensor-parallel is used, it is not required to reduce
the shared_experts results immediately. Instead we reduce at the
once at the end of the MoE op. (Refer to DeepSeekV2MoE module)
With EP and all2all kernels - this is no longer viable as all
GPU ranks in DP, produce the complete set of hidden_states.
Therefore it is required that we reduce the shared_experts output
early.
"""
return (self.use_pplx_kernels or self.use_deepep_ht_kernels
or self.use_deepep_ll_kernels)
def maybe_all_reduce_tensor_model_parallel(
self, final_hidden_states: torch.Tensor):
"""
The pplx combine kernel reduces across GPU ranks by default.
"""
if (self.use_pplx_kernels or self.use_deepep_ht_kernels
or self.use_deepep_ll_kernels):
return final_hidden_states
else:
return tensor_model_parallel_all_reduce(final_hidden_states)
def forward(
self,
hidden_states: torch.Tensor,
router_logits: torch.Tensor,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
og_hidden_states = hidden_states.shape[-1]
if self.hidden_size != og_hidden_states:
hidden_states = F.pad(hidden_states,
(0, self.hidden_size - og_hidden_states),
mode='constant',
value=0.0)
if self.shared_experts is None:
if current_platform.is_tpu():
# TODO: Once the OOM issue for the TPU backend is resolved, we
# will switch to using the moe_forward custom op.
fused_output = self.forward_impl(hidden_states, router_logits)
assert not isinstance(fused_output, tuple)
else:
fused_output = torch.ops.vllm.moe_forward(
hidden_states, router_logits, self.layer_name)
return fused_output[..., :og_hidden_states]
else:
if current_platform.is_tpu():
# TODO: Once the OOM issue for the TPU backend is resolved, we
# will switch to using the moe_forward custom op.
shared_output, fused_output = self.forward_impl(
hidden_states, router_logits)
else:
shared_output, fused_output = torch.ops.vllm.moe_forward_shared(
hidden_states, router_logits, self.layer_name)
return (shared_output[..., :og_hidden_states],
fused_output[..., :og_hidden_states])
def forward_impl_chunked(
self,
full_hidden_states: torch.Tensor,
full_router_logits: torch.Tensor,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
assert self.batched_hidden_states is not None
assert self.batched_router_logits is not None
assert self.batched_hidden_states.dtype == full_hidden_states.dtype
assert self.batched_router_logits.dtype == full_router_logits.dtype
# Check size compatibility.
assert (
self.batched_hidden_states.size(-1) == full_hidden_states.size(-1))
assert (
self.batched_router_logits.size(-1) == full_router_logits.size(-1))
full_fused_final_hidden_states = torch.empty_like(full_hidden_states)
if self.shared_experts is not None:
full_shared_final_hidden_states = torch.empty_like(
full_hidden_states)
def process_chunk(chunk_start, chunk_end, skip_result_store=False):
chunk_size = chunk_end - chunk_start
hidden_states = full_hidden_states[chunk_start:chunk_end, :]
router_logits = full_router_logits[chunk_start:chunk_end, :]
assert (self.batched_hidden_states.size(0) # type: ignore
>= chunk_size)
assert (self.batched_router_logits.size(0) # type: ignore
>= chunk_size)
staged_hidden_states = self.batched_hidden_states[:
chunk_size, :] # type: ignore
staged_router_logits = self.batched_router_logits[:
chunk_size, :] # type: ignore
staged_hidden_states.copy_(hidden_states, non_blocking=True)
staged_router_logits.copy_(router_logits, non_blocking=True)
# Matrix multiply.
final_hidden_states = self.quant_method.apply(
layer=self,
x=staged_hidden_states,
router_logits=staged_router_logits,
top_k=self.top_k,
renormalize=self.renormalize,
use_grouped_topk=self.use_grouped_topk,
global_num_experts=self.global_num_experts,
expert_map=self.expert_map,
topk_group=self.topk_group,
num_expert_group=self.num_expert_group,
custom_routing_function=self.custom_routing_function,
scoring_func=self.scoring_func,
routed_scaling_factor=self.routed_scaling_factor,
e_score_correction_bias=self.e_score_correction_bias,
activation=self.activation,
enable_eplb=self.enable_eplb,
expert_load_view=self.expert_load_view,
logical_to_physical_map=self.logical_to_physical_map,
logical_replica_count=self.logical_replica_count,
)
assert self.shared_experts is None or isinstance(
final_hidden_states, tuple)
if not skip_result_store:
if self.shared_experts is None:
full_fused_final_hidden_states[
chunk_start:chunk_end, :].copy_(final_hidden_states,
non_blocking=True)
else:
full_shared_final_hidden_states[
chunk_start:chunk_end, :].copy_(final_hidden_states[0],
non_blocking=True)
full_fused_final_hidden_states[
chunk_start:chunk_end, :].copy_(final_hidden_states[1],
non_blocking=True)
ctx = get_forward_context()
# flashinfer_cutlass_kernels can handle: optional DP + TP/EP
max_tokens_across_dispatchers = ctx.dp_metadata.max_tokens_across_dp_cpu
moe_dp_chunk_size_per_rank = self.moe_config.max_num_tokens
# If the input to the MoE is sequence parallel then divide by sp_size
# to find the maximum number of tokens for any individual dispatcher.
if self.is_sequence_parallel:
max_tokens_across_dispatchers = cdiv(max_tokens_across_dispatchers,
self.sp_size)
num_tokens = full_hidden_states.size(0)
for chunk_idx, chunk_start_ in enumerate(
range(0, max_tokens_across_dispatchers,
moe_dp_chunk_size_per_rank)):
chunk_start = chunk_start_
chunk_end = min(chunk_start + moe_dp_chunk_size_per_rank,
max_tokens_across_dispatchers)
# clamp start and end
chunk_start = min(chunk_start, num_tokens - 1)
chunk_end = min(chunk_end, num_tokens)
with ctx.dp_metadata.chunked_sizes(moe_dp_chunk_size_per_rank,
chunk_idx):
process_chunk(chunk_start,
chunk_end,
skip_result_store=chunk_start_ >= num_tokens)
if self.shared_experts is None:
return full_fused_final_hidden_states
else:
return (full_shared_final_hidden_states,
full_fused_final_hidden_states)
def forward_impl(
self,
hidden_states: torch.Tensor,
router_logits: torch.Tensor,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
assert self.quant_method is not None
# Route to the chunked forward path using the FlashInfer Cutlass kernel
# only when data parallelism (DP) is enabled.
use_flashinfer_cutlass_kernels = (
self.dp_size > 1
and self.moe_config.use_flashinfer_cutlass_kernels)
if (self.moe_parallel_config.use_pplx_kernels
or self.moe_parallel_config.use_deepep_ll_kernels
or use_flashinfer_cutlass_kernels):
return self.forward_impl_chunked(hidden_states, router_logits)
do_naive_dispatch_combine: bool = (
self.dp_size > 1
and not self.moe_parallel_config.use_deepep_ht_kernels
and not self.moe_config.use_flashinfer_cutlass_kernels)
# If there are shared experts but we are not using a modular kernel, the
# shared experts must be called here
if (not isinstance(self.quant_method.fused_experts,
FusedMoEModularKernel)
and self.shared_experts is not None):
shared_output = self.shared_experts(hidden_states)
else:
shared_output = None
if do_naive_dispatch_combine:
hidden_states, router_logits = get_ep_group().dispatch(
hidden_states, router_logits)
# Matrix multiply.
final_hidden_states = self.quant_method.apply(
layer=self,
x=hidden_states,
router_logits=router_logits,
top_k=self.top_k,
renormalize=self.renormalize,
use_grouped_topk=self.use_grouped_topk,
global_num_experts=self.global_num_experts,
expert_map=self.expert_map,
topk_group=self.topk_group,
num_expert_group=self.num_expert_group,
custom_routing_function=self.custom_routing_function,
scoring_func=self.scoring_func,
routed_scaling_factor=self.routed_scaling_factor,
e_score_correction_bias=self.e_score_correction_bias,
activation=self.activation,
apply_router_weight_on_input=self.apply_router_weight_on_input,
enable_eplb=self.enable_eplb,
expert_load_view=self.expert_load_view,
logical_to_physical_map=self.logical_to_physical_map,
logical_replica_count=self.logical_replica_count,
)
if shared_output is not None:
assert not isinstance(final_hidden_states, tuple)
assert self.shared_experts is not None
final_hidden_states = (
shared_output,
final_hidden_states,
)
def reduce_output(states: torch.Tensor,
do_combine: bool = True) -> torch.Tensor:
if do_naive_dispatch_combine and do_combine:
states = get_ep_group().combine(states)
if self.reduce_results and (self.tp_size > 1 or self.ep_size > 1):
states = self.maybe_all_reduce_tensor_model_parallel(states)
return states
if self.shared_experts is None:
assert not isinstance(final_hidden_states, tuple)
return reduce_output(final_hidden_states)
else:
return (
reduce_output(final_hidden_states[0], do_combine=False),
reduce_output(final_hidden_states[1]),
)
@classmethod
def make_expert_params_mapping(
cls,
ckpt_gate_proj_name: str,
ckpt_down_proj_name: str,
ckpt_up_proj_name: str,
num_experts: int,
num_redundant_experts: int = 0) -> list[tuple[str, str, int, str]]:
num_physical_experts = num_experts + num_redundant_experts
# In the returned mapping:
# - `expert_id` is the physical expert id
# - `weight_name` contains the weight name of the logical expert
# So that we should map the expert id to logical in `weight_name`
physical_to_logical_map = \
EplbState.build_initial_global_physical_to_logical_map(
num_experts, num_redundant_experts)
return [
# (param_name, weight_name, expert_id, shard_id)
("experts.w13_" if weight_name
in [ckpt_gate_proj_name, ckpt_up_proj_name] else "experts.w2_",
f"experts.{physical_to_logical_map[expert_id]}.{weight_name}.",
expert_id, shard_id) for expert_id in range(num_physical_experts)
for shard_id, weight_name in [
("w1", ckpt_gate_proj_name),
("w2", ckpt_down_proj_name),
("w3", ckpt_up_proj_name),
]
]
def extra_repr(self) -> str:
s = (
f"global_num_experts={self.global_num_experts}, "
f"local_num_experts={self.local_num_experts}, "
f"top_k={self.top_k}, "
f"intermediate_size_per_partition={self.intermediate_size_per_partition}, " # noqa: E501
f"tp_size={self.tp_size},\n"
f"ep_size={self.ep_size}, "
f"reduce_results={self.reduce_results}, "
f"renormalize={self.renormalize}, "
f"use_grouped_topk={self.use_grouped_topk}")
if self.use_grouped_topk:
s += f", num_expert_group={self.num_expert_group}, topk_group={self.topk_group}" # noqa: E501
s += f", scoring_func='{self.scoring_func}', activation='{self.activation}'" # noqa: E501
return s
def moe_forward(
hidden_states: torch.Tensor,
router_logits: torch.Tensor,
layer_name: str,
) -> torch.Tensor:
forward_context: ForwardContext = get_forward_context()
self = forward_context.no_compile_layers[layer_name]
assert self.shared_experts is None
return self.forward_impl(hidden_states, router_logits)
def moe_forward_fake(
hidden_states: torch.Tensor,
router_logits: torch.Tensor,
layer_name: str,
) -> torch.Tensor:
return torch.empty_like(hidden_states)
direct_register_custom_op(
op_name="moe_forward",
op_func=moe_forward,
mutates_args=["hidden_states"],
fake_impl=moe_forward_fake,
dispatch_key=current_platform.dispatch_key,
tags=(torch.Tag.needs_fixed_stride_order, ),
)
def moe_forward_shared(
hidden_states: torch.Tensor,
router_logits: torch.Tensor,
layer_name: str,
) -> tuple[torch.Tensor, torch.Tensor]:
forward_context: ForwardContext = get_forward_context()
self = forward_context.no_compile_layers[layer_name]
assert self.shared_experts is not None
return self.forward_impl(hidden_states, router_logits)
def moe_forward_shared_fake(
hidden_states: torch.Tensor,
router_logits: torch.Tensor,
layer_name: str,
) -> tuple[torch.Tensor, torch.Tensor]:
shared_out = torch.empty_like(hidden_states)
fused_out = torch.empty_like(hidden_states)
return shared_out, fused_out
direct_register_custom_op(
op_name="moe_forward_shared",
op_func=moe_forward_shared,
mutates_args=["hidden_states"],
fake_impl=moe_forward_shared_fake,
dispatch_key=current_platform.dispatch_key,
tags=(torch.Tag.needs_fixed_stride_order, ),
)
# Mark the FusedMoE weight_loader as supporting MoE-specific parameters
# to avoid expensive runtime reflection in model loading code
FusedMoE.weight_loader.supports_moe_loading = True # type: ignore[attr-defined]