mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 19:35:22 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
403 lines
14 KiB
Python
403 lines
14 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import base64
|
|
import mimetypes
|
|
import os
|
|
from tempfile import NamedTemporaryFile, TemporaryDirectory
|
|
from typing import TYPE_CHECKING, Dict, NamedTuple, Optional, Tuple
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from PIL import Image, ImageChops
|
|
from transformers import AutoConfig, AutoTokenizer
|
|
|
|
from vllm.multimodal.inputs import PlaceholderRange
|
|
from vllm.multimodal.utils import (MediaConnector,
|
|
merge_and_sort_multimodal_metadata,
|
|
repeat_and_pad_placeholder_tokens)
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.multimodal.hasher import MultiModalHashDict
|
|
from vllm.multimodal.inputs import MultiModalPlaceholderDict
|
|
|
|
# Test different image extensions (JPG/PNG) and formats (gray/RGB/RGBA)
|
|
TEST_IMAGE_URLS = [
|
|
"https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
|
|
"https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png",
|
|
"https://upload.wikimedia.org/wikipedia/commons/thumb/9/91/Venn_diagram_rgb.svg/1280px-Venn_diagram_rgb.svg.png",
|
|
"https://upload.wikimedia.org/wikipedia/commons/0/0b/RGBA_comp.png",
|
|
]
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def url_images() -> Dict[str, Image.Image]:
|
|
connector = MediaConnector()
|
|
|
|
return {
|
|
image_url: connector.fetch_image(image_url)
|
|
for image_url in TEST_IMAGE_URLS
|
|
}
|
|
|
|
|
|
def get_supported_suffixes() -> Tuple[str, ...]:
|
|
# We should at least test the file types mentioned in GPT-4 with Vision
|
|
OPENAI_SUPPORTED_SUFFIXES = ('.png', '.jpeg', '.jpg', '.webp', '.gif')
|
|
|
|
# Additional file types that are supported by us
|
|
EXTRA_SUPPORTED_SUFFIXES = ('.bmp', '.tiff')
|
|
|
|
return OPENAI_SUPPORTED_SUFFIXES + EXTRA_SUPPORTED_SUFFIXES
|
|
|
|
|
|
def _image_equals(a: Image.Image, b: Image.Image) -> bool:
|
|
return (np.asarray(a) == np.asarray(b.convert(a.mode))).all()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
|
|
async def test_fetch_image_http(image_url: str):
|
|
connector = MediaConnector()
|
|
|
|
image_sync = connector.fetch_image(image_url)
|
|
image_async = await connector.fetch_image_async(image_url)
|
|
assert _image_equals(image_sync, image_async)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
|
|
@pytest.mark.parametrize("suffix", get_supported_suffixes())
|
|
async def test_fetch_image_base64(url_images: Dict[str, Image.Image],
|
|
image_url: str, suffix: str):
|
|
connector = MediaConnector()
|
|
url_image = url_images[image_url]
|
|
|
|
try:
|
|
mime_type = Image.MIME[Image.registered_extensions()[suffix]]
|
|
except KeyError:
|
|
try:
|
|
mime_type = mimetypes.types_map[suffix]
|
|
except KeyError:
|
|
pytest.skip('No MIME type')
|
|
|
|
with NamedTemporaryFile(suffix=suffix) as f:
|
|
try:
|
|
url_image.save(f.name)
|
|
except Exception as e:
|
|
if e.args[0] == 'cannot write mode RGBA as JPEG':
|
|
pytest.skip('Conversion not supported')
|
|
|
|
raise
|
|
|
|
base64_image = base64.b64encode(f.read()).decode("utf-8")
|
|
data_url = f"data:{mime_type};base64,{base64_image}"
|
|
|
|
data_image_sync = connector.fetch_image(data_url)
|
|
if _image_equals(url_image, Image.open(f)):
|
|
assert _image_equals(url_image, data_image_sync)
|
|
else:
|
|
pass # Lossy format; only check that image can be opened
|
|
|
|
data_image_async = await connector.fetch_image_async(data_url)
|
|
assert _image_equals(data_image_sync, data_image_async)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
|
|
async def test_fetch_image_local_files(image_url: str):
|
|
connector = MediaConnector()
|
|
|
|
with TemporaryDirectory() as temp_dir:
|
|
local_connector = MediaConnector(allowed_local_media_path=temp_dir)
|
|
|
|
origin_image = connector.fetch_image(image_url)
|
|
origin_image.save(os.path.join(temp_dir, os.path.basename(image_url)),
|
|
quality=100,
|
|
icc_profile=origin_image.info.get('icc_profile'))
|
|
|
|
image_async = await local_connector.fetch_image_async(
|
|
f"file://{temp_dir}/{os.path.basename(image_url)}")
|
|
image_sync = local_connector.fetch_image(
|
|
f"file://{temp_dir}/{os.path.basename(image_url)}")
|
|
# Check that the images are equal
|
|
assert not ImageChops.difference(image_sync, image_async).getbbox()
|
|
|
|
with pytest.raises(ValueError, match="must be a subpath"):
|
|
await local_connector.fetch_image_async(
|
|
f"file://{temp_dir}/../{os.path.basename(image_url)}")
|
|
with pytest.raises(RuntimeError, match="Cannot load local files"):
|
|
await connector.fetch_image_async(
|
|
f"file://{temp_dir}/../{os.path.basename(image_url)}")
|
|
|
|
with pytest.raises(ValueError, match="must be a subpath"):
|
|
local_connector.fetch_image(
|
|
f"file://{temp_dir}/../{os.path.basename(image_url)}")
|
|
with pytest.raises(RuntimeError, match="Cannot load local files"):
|
|
connector.fetch_image(
|
|
f"file://{temp_dir}/../{os.path.basename(image_url)}")
|
|
|
|
|
|
@pytest.mark.parametrize("model", ["llava-hf/llava-v1.6-mistral-7b-hf"])
|
|
def test_repeat_and_pad_placeholder_tokens(model):
|
|
config = AutoConfig.from_pretrained(model)
|
|
image_token_id = config.image_token_index
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model)
|
|
|
|
test_cases = [
|
|
(
|
|
"<image>",
|
|
2,
|
|
"<image><image>",
|
|
[32000, 32000],
|
|
[{ "offset": 0, "length": 2 }],
|
|
),
|
|
(
|
|
"<image><image>",
|
|
2,
|
|
"<image><image><image>",
|
|
[32000, 32000, 32000],
|
|
[{ "offset": 0, "length": 2 }],
|
|
),
|
|
(
|
|
"<image><image>",
|
|
[3, 2],
|
|
"<image><image><image><image><image>",
|
|
[32000, 32000, 32000, 32000, 32000],
|
|
[{ "offset": 0, "length": 3 }, { "offset": 3, "length": 2 }],
|
|
),
|
|
(
|
|
"Image:<image>Image:<image>!",
|
|
[3, 2],
|
|
"Image:<image><image><image>Image:<image><image>!",
|
|
[9833, 28747, 32000, 32000, 32000, 9833, 28747, 32000, 32000, 918],
|
|
[{ "offset": 2, "length": 3 }, { "offset": 7, "length": 2 }],
|
|
),
|
|
(
|
|
"<image>",
|
|
[3, 2],
|
|
"<image><image><image>",
|
|
[32000, 32000, 32000],
|
|
[{ "offset": 0, "length": 3 }],
|
|
),
|
|
] # yapf: disable
|
|
|
|
for (
|
|
prompt,
|
|
repeat_count,
|
|
expected_prompt,
|
|
expected_token_ids,
|
|
expected_ranges,
|
|
) in test_cases:
|
|
new_prompt, new_token_ids, ranges = repeat_and_pad_placeholder_tokens(
|
|
tokenizer=tokenizer,
|
|
prompt=prompt,
|
|
prompt_token_ids=tokenizer.encode(prompt,
|
|
add_special_tokens=False),
|
|
placeholder_token_id=image_token_id,
|
|
repeat_count=repeat_count,
|
|
)
|
|
assert new_prompt == expected_prompt
|
|
assert new_token_ids == expected_token_ids
|
|
assert ranges == expected_ranges
|
|
|
|
|
|
# Used for the next two tests related to `merge_and_sort_multimodal_metadata`.
|
|
class TestCase(NamedTuple):
|
|
mm_positions: "MultiModalPlaceholderDict"
|
|
mm_hashes: Optional["MultiModalHashDict"]
|
|
expected_modalities: list[str]
|
|
expected_ranges: list[PlaceholderRange]
|
|
expected_hashes: Optional[list[str]]
|
|
|
|
|
|
def test_merge_and_sort_multimodal_metadata():
|
|
|
|
test_cases = [
|
|
# Single modality should return result as is but flattened
|
|
TestCase(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=0, length=2),
|
|
PlaceholderRange(offset=3, length=2),
|
|
]
|
|
},
|
|
mm_hashes={"image": ["hash1", "hash2"]},
|
|
expected_modalities=["image"],
|
|
expected_ranges=[
|
|
PlaceholderRange(offset=0, length=2),
|
|
PlaceholderRange(offset=3, length=2),
|
|
],
|
|
expected_hashes=["hash1", "hash2"],
|
|
),
|
|
|
|
# Single modality without hashes return None for mm hash.
|
|
TestCase(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=0, length=2),
|
|
PlaceholderRange(offset=2, length=2),
|
|
]
|
|
},
|
|
mm_hashes=None,
|
|
expected_modalities=["image"],
|
|
expected_ranges=[
|
|
PlaceholderRange(offset=0, length=2),
|
|
PlaceholderRange(offset=2, length=2),
|
|
],
|
|
expected_hashes=None,
|
|
),
|
|
|
|
# Multiple modalities with hashes should return sorted modalities
|
|
# and flattened ranges and hashes.
|
|
TestCase(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=7, length=4),
|
|
PlaceholderRange(offset=11, length=5),
|
|
],
|
|
"audio": [
|
|
PlaceholderRange(offset=0, length=2),
|
|
PlaceholderRange(offset=2, length=3),
|
|
]
|
|
},
|
|
mm_hashes={
|
|
"image": ["image_hash1", "image_hash2"],
|
|
"audio": ["audio_hash1", "audio_hash2"],
|
|
},
|
|
expected_modalities=["audio", "image"],
|
|
expected_ranges=[
|
|
PlaceholderRange(offset=0, length=2),
|
|
PlaceholderRange(offset=2, length=3),
|
|
PlaceholderRange(offset=7, length=4),
|
|
PlaceholderRange(offset=11, length=5),
|
|
],
|
|
expected_hashes=[
|
|
"audio_hash1", "audio_hash2", "image_hash1", "image_hash2"
|
|
],
|
|
),
|
|
|
|
# Multiple modalities without hashes should return sorted modalities
|
|
# and flattened ranges and None.
|
|
TestCase(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=7, length=4),
|
|
PlaceholderRange(offset=11, length=5),
|
|
],
|
|
"audio": [
|
|
PlaceholderRange(offset=0, length=2),
|
|
PlaceholderRange(offset=2, length=3),
|
|
]
|
|
},
|
|
mm_hashes=None,
|
|
expected_modalities=["audio", "image"],
|
|
expected_ranges=[
|
|
PlaceholderRange(offset=0, length=2),
|
|
PlaceholderRange(offset=2, length=3),
|
|
PlaceholderRange(offset=7, length=4),
|
|
PlaceholderRange(offset=11, length=5),
|
|
],
|
|
expected_hashes=None,
|
|
),
|
|
|
|
# Three modalities
|
|
TestCase(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=15, length=7),
|
|
PlaceholderRange(offset=22, length=8),
|
|
],
|
|
"audio": [
|
|
PlaceholderRange(offset=0, length=2),
|
|
],
|
|
"video": [
|
|
PlaceholderRange(offset=3, length=4),
|
|
PlaceholderRange(offset=7, length=5),
|
|
PlaceholderRange(offset=12, length=6),
|
|
]
|
|
},
|
|
mm_hashes={
|
|
"image": ["image_hash1", "image_hash2"],
|
|
"audio": ["audio_hash1"],
|
|
"video": ["video_hash1", "video_hash2", "video_hash3"]
|
|
},
|
|
expected_modalities=["audio", "video", "image"],
|
|
expected_ranges=[
|
|
PlaceholderRange(offset=0, length=2),
|
|
PlaceholderRange(offset=3, length=4),
|
|
PlaceholderRange(offset=7, length=5),
|
|
PlaceholderRange(offset=12, length=6),
|
|
PlaceholderRange(offset=15, length=7),
|
|
PlaceholderRange(offset=22, length=8),
|
|
],
|
|
expected_hashes=[
|
|
"audio_hash1", "video_hash1", "video_hash2", "video_hash3",
|
|
"image_hash1", "image_hash2"
|
|
],
|
|
),
|
|
]
|
|
|
|
for (mm_positions, mm_hashes, expected_modalities, expected_ranges,
|
|
expected_hashes) in test_cases:
|
|
modalities, ranges, hashes = merge_and_sort_multimodal_metadata(
|
|
mm_positions, mm_hashes)
|
|
|
|
assert modalities == expected_modalities
|
|
assert ranges == expected_ranges
|
|
assert hashes == expected_hashes
|
|
|
|
|
|
def test_merge_and_sort_multimodal_metadata_with_interleaving():
|
|
|
|
test_cases = [
|
|
|
|
# <image> <audio> <image> <audio>
|
|
TestCase(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=0, length=4),
|
|
PlaceholderRange(offset=8, length=2),
|
|
],
|
|
"audio": [
|
|
PlaceholderRange(offset=5, length=2),
|
|
PlaceholderRange(offset=11, length=4),
|
|
]
|
|
},
|
|
mm_hashes={
|
|
"image": ["image_hash1", "image_hash2"],
|
|
"audio": ["audio_hash1", "audio_hash2"],
|
|
},
|
|
expected_modalities=[],
|
|
expected_ranges=[],
|
|
expected_hashes=None,
|
|
),
|
|
|
|
# <image> <image> <video> <audio> <image>
|
|
TestCase(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=0, length=2),
|
|
PlaceholderRange(offset=2, length=3),
|
|
PlaceholderRange(offset=20, length=4),
|
|
],
|
|
"audio": [
|
|
PlaceholderRange(offset=5, length=2),
|
|
],
|
|
"video": [
|
|
PlaceholderRange(offset=8, length=5),
|
|
]
|
|
},
|
|
mm_hashes=None,
|
|
expected_modalities=[],
|
|
expected_ranges=[],
|
|
expected_hashes=None,
|
|
),
|
|
]
|
|
|
|
for case in test_cases:
|
|
with pytest.raises(ValueError) as ex_info:
|
|
merge_and_sort_multimodal_metadata(case.mm_positions,
|
|
case.mm_hashes)
|
|
|
|
assert "Interleaved mixed-modality" in str(ex_info.value)
|