vllm/vllm/attention/layers/cross_attention.py
Nicolò Lucchesi b26b70bec4
[Misc] Refactor get_kv_cache_spec into AttentionLayerBase (#26587)
Signed-off-by: NickLucche <nlucches@redhat.com>
2025-10-18 13:51:21 +00:00

185 lines
5.9 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import functools
from copy import copy
import numpy as np
import torch
from vllm import envs
from vllm.attention.backends.abstract import (
AttentionBackend,
AttentionMetadata,
AttentionType,
)
from vllm.attention.layer import Attention
from vllm.attention.selector import get_attn_backend
from vllm.config import CacheConfig, VllmConfig
from vllm.logger import init_logger
from vllm.utils import cdiv
from vllm.v1.attention.backends.utils import (
CommonAttentionMetadata,
subclass_attention_backend,
)
from vllm.v1.kv_cache_interface import CrossAttentionSpec, KVCacheSpec
logger = init_logger(__name__)
def _get_max_encoder_len(vllm_config: "VllmConfig") -> int:
"""Gets the max number of encoder input tokens from the config."""
sc = vllm_config.scheduler_config
assert sc and isinstance(sc.max_num_encoder_input_tokens, int), (
"max_num_encoder_input_tokens must be int for enc-dec models"
)
return sc.max_num_encoder_input_tokens
def _get_cross_slot_mapping(
encoder_seq_lens: np.ndarray,
block_table_tensor: torch.Tensor,
kv_cache_spec: CrossAttentionSpec,
device: torch.device,
) -> torch.Tensor:
"""Get cross-attention slot mappings."""
block_size = kv_cache_spec.block_size
slot_mappings = []
# Find indices with non-zero encoder sequence lengths
# The majority of parallel requests will be running the
# decoder, so this list should be relatively small.
active_indices = np.nonzero(encoder_seq_lens)[0]
for req_index in active_indices:
encoder_seq_len = encoder_seq_lens[req_index].item()
# Calculate the number of blocks needed for this request
num_blocks_needed = cdiv(encoder_seq_len, block_size)
# Get the block IDs for this request from the tensor
req_block_ids = block_table_tensor[req_index]
# Get only the blocks we need (first num_blocks_needed blocks)
needed_block_ids = req_block_ids[:num_blocks_needed]
# All needed blocks are allocated
i_values = torch.arange(encoder_seq_len, dtype=torch.int64, device=device)
block_indices = i_values // block_size
block_offsets = i_values % block_size
block_numbers = needed_block_ids[block_indices]
slot_mapping = block_numbers * block_size + block_offsets
slot_mappings.append(slot_mapping)
if slot_mappings:
return torch.cat(slot_mappings)
else:
return torch.empty(0, dtype=torch.int64, device=device)
@functools.lru_cache
def create_cross_attention_backend(
underlying_attn_backend: AttentionBackend,
) -> type[AttentionBackend]:
prefix = "CrossAttention_"
underlying_builder = underlying_attn_backend.get_builder_cls()
class CrossAttentionBuilder(underlying_builder): # type: ignore
def build(
self,
common_prefix_len: int,
common_attn_metadata: CommonAttentionMetadata,
fast_build: bool = False,
) -> AttentionMetadata:
new_metadata = copy(common_attn_metadata)
new_metadata.causal = False
max_encoder_len = _get_max_encoder_len(self.vllm_config)
new_metadata.max_seq_len = max_encoder_len
new_metadata.seq_lens = torch.full(
(new_metadata.num_reqs,),
max_encoder_len,
dtype=torch.int32,
device=self.device,
)
new_metadata.seq_lens_cpu = torch.full(
(new_metadata.num_reqs,),
max_encoder_len,
dtype=torch.int32,
device="cpu",
)
new_metadata.slot_mapping = _get_cross_slot_mapping(
new_metadata.encoder_seq_lens,
new_metadata.block_table_tensor,
self.kv_cache_spec,
self.device,
)
return super().build(common_prefix_len, new_metadata, fast_build)
attn_backend = subclass_attention_backend(
name_prefix=prefix,
attention_backend_cls=underlying_attn_backend,
builder_cls=CrossAttentionBuilder,
)
return attn_backend
class CrossAttention(Attention):
"""
Cross-attention for encoder-decoder models.
Handles attention between decoder queries and encoder keys/values.
"""
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
cache_config: CacheConfig | None = None,
attn_type: str | None = None,
**kwargs,
):
dtype = torch.get_default_dtype()
if cache_config is not None:
kv_cache_dtype = cache_config.cache_dtype
block_size = cache_config.block_size
else:
kv_cache_dtype = "auto"
block_size = 16
if envs.VLLM_USE_V1:
underlying_attn_backend = get_attn_backend(
head_size, dtype, kv_cache_dtype, block_size
)
attn_backend = create_cross_attention_backend(underlying_attn_backend)
else:
# in v0 cross attention is handled inside the backends
attn_backend = None
if attn_type is not None:
assert attn_type == AttentionType.ENCODER_DECODER, (
"CrossAttention only supports AttentionType.ENCODER_DECODER"
)
super().__init__(
num_heads=num_heads,
head_size=head_size,
scale=scale,
cache_config=cache_config,
attn_backend=attn_backend,
attn_type=AttentionType.ENCODER_DECODER,
**kwargs,
)
def get_kv_cache_spec(self, vllm_config: VllmConfig) -> KVCacheSpec:
return CrossAttentionSpec(
block_size=vllm_config.cache_config.block_size,
num_kv_heads=self.num_kv_heads,
head_size=self.head_size,
dtype=self.kv_cache_torch_dtype,
)