vllm/csrc/cache.h
Lucas Wilkinson 3e41992fec
[Attention] Use sparse prefill kernel for fp8 kv-cache in DeepSeek-v3.2 (#27532)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-12-12 05:57:47 -08:00

86 lines
4.0 KiB
C++

#pragma once
#include <torch/all.h>
#include <c10/util/Optional.h>
#include <map>
#include <vector>
void swap_blocks(torch::Tensor& src, torch::Tensor& dst,
const torch::Tensor& block_mapping);
// Note: the key_caches and value_caches vectors are constant but
// not the Tensors they contain. The vectors need to be const refs
// in order to satisfy pytorch's C++ operator registration code.
void copy_blocks(std::vector<torch::Tensor> const& key_caches,
std::vector<torch::Tensor> const& value_caches,
const torch::Tensor& block_mapping);
void copy_blocks_mla(std::vector<torch::Tensor> const& kv_caches,
const torch::Tensor& block_mapping);
void reshape_and_cache(torch::Tensor& key, torch::Tensor& value,
torch::Tensor& key_cache, torch::Tensor& value_cache,
torch::Tensor& slot_mapping,
const std::string& kv_cache_dtype,
torch::Tensor& k_scale, torch::Tensor& v_scale);
void reshape_and_cache_flash(torch::Tensor& key, torch::Tensor& value,
torch::Tensor& key_cache,
torch::Tensor& value_cache,
torch::Tensor& slot_mapping,
const std::string& kv_cache_dtype,
torch::Tensor& k_scale, torch::Tensor& v_scale);
void concat_and_cache_mla(torch::Tensor& kv_c, torch::Tensor& k_pe,
torch::Tensor& kv_cache, torch::Tensor& slot_mapping,
const std::string& kv_cache_dtype,
torch::Tensor& scale);
// Just for unittest
void convert_fp8(torch::Tensor& dst_cache, torch::Tensor& src_cache,
const double scale, const std::string& kv_cache_dtype);
void gather_and_maybe_dequant_cache(
torch::Tensor const& src_cache, // [NUM_BLOCKS, BLOCK_SIZE, ENTRIES...]
torch::Tensor const& dst, // [TOT_TOKENS, ENTRIES...]
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
torch::Tensor const& cu_seq_lens, // [BATCH+1]
torch::Tensor const& token_to_seq, // [MAX_TOKEN_ACROSS_CHUNKS]
int64_t num_tokens, const std::string& kv_cache_dtype,
torch::Tensor const& scale,
std::optional<torch::Tensor> seq_starts = std::nullopt);
// TODO(hc): cp_gather_cache need support scaled kvcahe in the future.
void cp_gather_cache(
torch::Tensor const& src_cache, // [NUM_BLOCKS, BLOCK_SIZE, ENTRIES...]
torch::Tensor const& dst, // [TOT_TOKENS, ENTRIES...]
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
torch::Tensor const& cu_seq_lens, // [BATCH+1]
int64_t batch_size, std::optional<torch::Tensor> seq_starts = std::nullopt);
// Gather and upconvert FP8 KV cache to BF16 workspace
void cp_gather_and_upconvert_fp8_kv_cache(
torch::Tensor const& src_cache, // [NUM_BLOCKS, BLOCK_SIZE, 656]
torch::Tensor const& dst, // [TOT_TOKENS, 576]
torch::Tensor const& block_table, // [BATCH, BLOCK_INDICES]
torch::Tensor const& seq_lens, // [BATCH]
torch::Tensor const& workspace_starts, // [BATCH]
int64_t batch_size);
// Indexer K quantization and cache function
void indexer_k_quant_and_cache(
torch::Tensor& k, // [num_tokens, head_dim]
torch::Tensor& kv_cache, // [num_blocks, block_size, cache_stride]
torch::Tensor& slot_mapping, // [num_tokens]
int64_t quant_block_size, // quantization block size
const std::string& scale_fmt);
// Extract function to gather quantized K cache
void cp_gather_indexer_k_quant_cache(
const torch::Tensor& kv_cache, // [num_blocks, block_size, cache_stride]
torch::Tensor& dst_k, // [num_tokens, head_dim]
torch::Tensor& dst_scale, // [num_tokens, head_dim / quant_block_size * 4]
const torch::Tensor& block_table, // [batch_size, num_blocks]
const torch::Tensor& cu_seq_lens); // [batch_size + 1]