Matthew Bonanni 430dd4d9eb
[Attention] Remove imports from vllm/attention/__init__.py (#29342)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-11-26 10:53:15 -07:00

571 lines
21 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# Copyright 2025 The Swiss AI Initiative.
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate the architectural differences made by
# the Swiss AI Initiative that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Apertus model compatible with HuggingFace weights."""
from collections.abc import Iterable
from itertools import islice
import torch
from torch import nn
from transformers import ApertusConfig
from vllm.attention.backends.abstract import AttentionType
from vllm.attention.layer import Attention
from vllm.attention.layers.encoder_only_attention import EncoderOnlyAttention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
from vllm.model_executor.layers.activation import XIELU
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
ColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader,
maybe_remap_kv_scale_name,
)
from vllm.sequence import IntermediateTensors
from .interfaces import SupportsLoRA, SupportsPP
from .utils import (
AutoWeightsLoader,
PPMissingLayer,
extract_layer_index,
is_pp_missing_parameter,
make_empty_intermediate_tensors_factory,
make_layers,
maybe_prefix,
)
class ApertusMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
quant_config: QuantizationConfig | None = None,
bias: bool = False,
prefix: str = "",
reduce_results: bool = True,
) -> None:
super().__init__()
self.up_proj = ColumnParallelLinear(
input_size=hidden_size,
output_size=intermediate_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.up_proj",
)
self.down_proj = RowParallelLinear(
input_size=intermediate_size,
output_size=hidden_size,
bias=bias,
quant_config=quant_config,
reduce_results=reduce_results,
prefix=f"{prefix}.down_proj",
)
if hidden_act != "xielu":
raise ValueError(
f"Unsupported activation: {hidden_act}. "
"Only xIELU is supported for now."
)
self.act_fn = XIELU()
def forward(self, x):
x, _ = self.up_proj(x)
x = self.act_fn(x)
x, _ = self.down_proj(x)
return x
class ApertusAttention(nn.Module):
def __init__(
self,
config: ApertusConfig,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
max_position_embeddings: int = 8192,
quant_config: QuantizationConfig | None = None,
bias: bool = False,
bias_o_proj: bool = False,
cache_config: CacheConfig | None = None,
prefix: str = "",
attn_type: str = AttentionType.DECODER,
) -> None:
super().__init__()
layer_idx = extract_layer_index(prefix)
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
# MistralConfig has an optional head_dim introduced by Mistral-Nemo
head_dim = getattr(config, "head_dim", None)
if head_dim is None:
head_dim = self.hidden_size // self.total_num_heads
self.head_dim = head_dim
# Phi models introduced a partial_rotary_factor parameter in the config
self.partial_rotary_factor = getattr(config, "partial_rotary_factor", 1)
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.max_position_embeddings = max_position_embeddings
self.qkv_proj = QKVParallelLinear(
hidden_size=hidden_size,
head_size=self.head_dim,
total_num_heads=self.total_num_heads,
total_num_kv_heads=self.total_num_kv_heads,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.o_proj = RowParallelLinear(
input_size=self.total_num_heads * self.head_dim,
output_size=hidden_size,
bias=bias_o_proj,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
self._init_rotary_emb(config, quant_config=quant_config)
sliding_window = None
if layer_types := getattr(config, "layer_types", None):
is_sliding = layer_types[layer_idx] == "sliding_attention"
if is_sliding:
sliding_window = config.sliding_window
attn_cls = (
EncoderOnlyAttention
if attn_type == AttentionType.ENCODER_ONLY
else Attention
)
self.attn = attn_cls(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
per_layer_sliding_window=sliding_window,
attn_type=attn_type,
prefix=f"{prefix}.attn",
)
self.q_norm = RMSNorm(self.head_dim, eps=config.rms_norm_eps)
self.k_norm = RMSNorm(self.head_dim, eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q = self.q_norm(q.contiguous().view(-1, self.head_dim)).view_as(q)
k = self.k_norm(k.contiguous().view(-1, self.head_dim)).view_as(k)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
output, _ = self.o_proj(attn_output)
return output
def _init_rotary_emb(
self,
config: ApertusConfig,
quant_config: QuantizationConfig | None,
) -> None:
is_neox_style = True
is_gguf = quant_config and quant_config.get_name() == "gguf"
if is_gguf and config.model_type == "apertus":
is_neox_style = False
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=int(self.partial_rotary_factor * self.head_dim),
max_position=self.max_position_embeddings,
rope_parameters=config.rope_parameters,
is_neox_style=is_neox_style,
partial_rotary_factor=self.partial_rotary_factor,
)
class ApertusDecoderLayer(nn.Module):
def __init__(
self,
config: ApertusConfig,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
# Support abacusai/Smaug-72B-v0.1 with attention_bias
# Support internlm/internlm-7b with bias
attention_bias = getattr(config, "attention_bias", False) or getattr(
config, "bias", False
)
bias_o_proj = attention_bias
# support internlm/internlm3-8b with qkv_bias
if hasattr(config, "qkv_bias"):
attention_bias = config.qkv_bias
# Apertus defaults to causal attention as it is a decoder-only model.
# You can override the HF config with `is_causal=False` to enable
# bidirectional attention, which is used in some embedding models
# (e.g. parasail-ai/GritLM-7B-vllm)
if getattr(config, "is_causal", True):
attn_type = AttentionType.DECODER
else:
attn_type = AttentionType.ENCODER_ONLY
self.self_attn = ApertusAttention(
config=config,
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=getattr(
config, "num_key_value_heads", config.num_attention_heads
),
max_position_embeddings=max_position_embeddings,
quant_config=quant_config,
bias=attention_bias,
bias_o_proj=bias_o_proj,
cache_config=cache_config,
prefix=f"{prefix}.self_attn",
attn_type=attn_type,
)
self.mlp = ApertusMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
bias=getattr(config, "mlp_bias", False),
prefix=f"{prefix}.mlp",
)
self.attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.feedforward_layernorm = RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: torch.Tensor | None,
) -> tuple[torch.Tensor, torch.Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.attention_layernorm(hidden_states)
else:
hidden_states, residual = self.attention_layernorm(hidden_states, residual)
hidden_states = self.self_attn(positions=positions, hidden_states=hidden_states)
# Fully Connected
hidden_states, residual = self.feedforward_layernorm(hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
@support_torch_compile
class ApertusModel(nn.Module):
def __init__(
self,
*,
vllm_config: VllmConfig,
prefix: str = "",
layer_type: type[nn.Module] = ApertusDecoderLayer,
):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.config = config
self.quant_config = quant_config
self.vocab_size = config.vocab_size
if get_pp_group().is_first_rank or (
config.tie_word_embeddings and get_pp_group().is_last_rank
):
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
quant_config=quant_config,
)
else:
self.embed_tokens = PPMissingLayer()
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: layer_type(
config=config,
cache_config=cache_config,
quant_config=quant_config,
prefix=prefix,
),
prefix=f"{prefix}.layers",
)
if get_pp_group().is_last_rank:
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
else:
self.norm = PPMissingLayer()
self.aux_hidden_state_layers = tuple[int, ...]()
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size
)
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor | None,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor | IntermediateTensors | tuple[torch.Tensor, list[torch.Tensor]]:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.embed_input_ids(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
aux_hidden_states = []
for idx, layer in enumerate(
islice(self.layers, self.start_layer, self.end_layer)
):
if idx in self.aux_hidden_state_layers:
aux_hidden_states.append(hidden_states + residual)
hidden_states, residual = layer(positions, hidden_states, residual)
if not get_pp_group().is_last_rank:
return IntermediateTensors(
{"hidden_states": hidden_states, "residual": residual}
)
hidden_states, _ = self.norm(hidden_states, residual)
if len(aux_hidden_states) > 0:
return hidden_states, aux_hidden_states
return hidden_states
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
(".qkv_proj", ".q_proj", "q"),
(".qkv_proj", ".k_proj", "k"),
(".qkv_proj", ".v_proj", "v"),
]
params_dict = dict(self.named_parameters())
# we need to load the buffers for beta and eps (XIELU)
for name, buffer in self.named_buffers():
if name.endswith(".beta") or name.endswith(".eps"):
params_dict[name] = buffer
loaded_params: set[str] = set()
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
if self.quant_config is not None and (
scale_name := self.quant_config.get_cache_scale(name)
):
# Loading kv cache quantization scales
param = params_dict[scale_name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
loaded_weight = (
loaded_weight if loaded_weight.dim() == 0 else loaded_weight[0]
)
weight_loader(param, loaded_weight)
loaded_params.add(scale_name)
continue
if "scale" in name:
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class ApertusForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
packed_modules_mapping = {"qkv_proj": ["q_proj", "k_proj", "v_proj"]}
# LoRA specific attributes
embedding_modules = {
"embed_tokens": "input_embeddings",
"lm_head": "output_embeddings",
}
embedding_padding_modules = ["lm_head"]
def __init__(
self,
*,
vllm_config: VllmConfig,
prefix: str = "",
layer_type: type[nn.Module] = ApertusDecoderLayer,
):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.config = config
self.model = self._init_model(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"),
layer_type=layer_type,
)
if get_pp_group().is_last_rank:
self.lm_head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "lm_head"),
)
if config.tie_word_embeddings:
self.lm_head = self.lm_head.tie_weights(self.model.embed_tokens)
logit_scale = getattr(config, "logit_scale", 1.0)
self.logits_processor = LogitsProcessor(
config.vocab_size, scale=logit_scale
)
else:
self.lm_head = PPMissingLayer()
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors
)
def set_aux_hidden_state_layers(self, layers: tuple[int, ...]) -> None:
self.model.aux_hidden_state_layers = layers
def get_eagle3_aux_hidden_state_layers(self) -> tuple[int, ...]:
num_layers = len(self.model.layers)
return (2, num_layers // 2, num_layers - 3)
def _init_model(
self,
vllm_config: VllmConfig,
prefix: str = "",
layer_type: type[nn.Module] = ApertusDecoderLayer,
):
return ApertusModel(
vllm_config=vllm_config, prefix=prefix, layer_type=layer_type
)
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.embed_input_ids(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor | IntermediateTensors:
model_output = self.model(
input_ids, positions, intermediate_tensors, inputs_embeds
)
return model_output
def compute_logits(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor | None:
logits = self.logits_processor(self.lm_head, hidden_states)
return logits
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(
self,
skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None),
)
return loader.load_weights(weights)