vllm/vllm/model_executor/models/llama_eagle.py
Zhewen Li 93c8672ceb
[Bugfix] Fix spec decode memory regression after #28549 (#28819)
Signed-off-by: zhewenli <zhewenli@meta.com>
2025-11-20 19:05:50 +08:00

214 lines
7.8 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from collections.abc import Iterable
import torch
import torch.nn as nn
from transformers import LlamaConfig
from vllm.compilation.decorators import support_torch_compile
from vllm.config import VllmConfig
from vllm.logger import init_logger
from vllm.model_executor.layers.linear import ReplicatedLinear
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader,
maybe_remap_kv_scale_name,
)
from vllm.model_executor.models.llama import LlamaDecoderLayer, LlamaForCausalLM
from .utils import (
AutoWeightsLoader,
get_draft_quant_config,
maybe_prefix,
process_eagle_weight,
)
logger = init_logger(__name__)
class LlamaDecoderLayer(LlamaDecoderLayer):
def __init__(
self,
vllm_config: VllmConfig,
disable_input_layernorm: bool,
prefix: str = "",
config: LlamaConfig | None = None,
) -> None:
super().__init__(vllm_config, prefix=prefix, config=config)
# Skip the input_layernorm
# https://github.com/SafeAILab/EAGLE/blob/35c78f6cdc19a73e05cf5c330b4c358dad970c6a/eagle/model/cnets.py#L427
if disable_input_layernorm:
del self.input_layernorm
self.input_layernorm = nn.Identity()
def get_quant_config(self, vllm_config: VllmConfig) -> QuantizationConfig | None:
"""Use drafter's quantization config instead of verifier's."""
return get_draft_quant_config(vllm_config)
@support_torch_compile
class LlamaModel(nn.Module):
def __init__(
self,
*,
vllm_config: VllmConfig,
prefix: str = "",
start_layer_id: int = 0,
) -> None:
super().__init__()
self.config = vllm_config.speculative_config.draft_model_config.hf_config
self.vocab_size = self.config.vocab_size
# Get drafter's quantization config
self.quant_config = get_draft_quant_config(vllm_config)
self.embed_tokens = VocabParallelEmbedding(
self.config.vocab_size,
self.config.hidden_size,
prefix=maybe_prefix(prefix, "embed_tokens"),
)
self.layers = nn.ModuleList(
[
LlamaDecoderLayer(
vllm_config,
i == 0,
prefix=maybe_prefix(prefix, f"layers.{i + start_layer_id}"),
config=self.config,
)
for i in range(self.config.num_hidden_layers)
]
)
self.fc = ReplicatedLinear(
input_size=self.config.hidden_size * 2,
output_size=self.config.hidden_size,
bias=False,
params_dtype=vllm_config.model_config.dtype,
quant_config=self.quant_config,
prefix=maybe_prefix(prefix, "fc"),
return_bias=False,
)
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
input_embeds = self.embed_tokens(input_ids)
hidden_states = self.fc(torch.cat((input_embeds, hidden_states), dim=-1))
residual = None
for layer in self.layers:
hidden_states, residual = layer(
positions,
hidden_states,
residual,
)
hidden_states = hidden_states + residual
return hidden_states, hidden_states
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
(".qkv_proj", ".q_proj", "q"),
(".qkv_proj", ".k_proj", "k"),
(".qkv_proj", ".v_proj", "v"),
(".gate_up_proj", ".gate_proj", 0),
(".gate_up_proj", ".up_proj", 1),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
# Handle kv cache quantization scales
if self.quant_config is not None and (
scale_name := self.quant_config.get_cache_scale(name)
):
# Loading kv cache quantization scales
param = params_dict[scale_name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
loaded_weight = (
loaded_weight if loaded_weight.dim() == 0 else loaded_weight[0]
)
weight_loader(param, loaded_weight)
loaded_params.add(scale_name)
continue
# Remapping the name FP8 kv-scale
if "scale" in name:
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class EagleLlamaForCausalLM(LlamaForCausalLM):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
nn.Module.__init__(self)
self.config = vllm_config.speculative_config.draft_model_config.hf_config
# Ensure draft_vocab_size is set
# default to the base vocab size when absent
if getattr(self.config, "draft_vocab_size", None) is None:
base_vocab_size = getattr(self.config, "vocab_size", None)
self.config.draft_vocab_size = base_vocab_size
target_layer_num = vllm_config.model_config.get_num_layers(
vllm_config.parallel_config
)
self.model = LlamaModel(
vllm_config=vllm_config, prefix="model", start_layer_id=target_layer_num
)
logit_scale = getattr(self.config, "logit_scale", 1.0)
self.logits_processor = LogitsProcessor(
self.config.vocab_size, scale=logit_scale
)
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.embed_input_ids(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
hidden_states: torch.Tensor,
inputs_embeds: torch.Tensor | None = None,
) -> tuple[torch.Tensor, torch.Tensor]:
if inputs_embeds is not None:
raise NotImplementedError(
f"{type(self).__name__} does not support multimodal inputs yet."
)
return self.model(input_ids, positions, hidden_states)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
def transform(inputs):
name, loaded_weight = inputs
if "lm_head" not in name:
name = "model." + name
process_eagle_weight(self, name)
return name, loaded_weight
loader = AutoWeightsLoader(
self,
skip_prefixes=None,
)
loader.load_weights(map(transform, weights))