mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 01:05:01 +08:00
571 lines
19 KiB
Python
571 lines
19 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
# Adapted from https://github.com/sgl-project/sglang/pull/2575
|
|
import functools
|
|
import json
|
|
import os
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import triton
|
|
import triton.language as tl
|
|
|
|
from vllm import _custom_ops as ops
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.quantization.utils.quant_utils import (
|
|
_normalize_quant_group_shape, scaled_dequantize)
|
|
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
|
|
CUTLASS_BLOCK_FP8_SUPPORTED, CUTLASS_FP8_SUPPORTED, apply_fp8_linear)
|
|
from vllm.platforms import current_platform
|
|
from vllm.utils import direct_register_custom_op
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
current_platform_fp8_dtype = (torch.float8_e4m3fnuz
|
|
if current_platform.is_rocm() else
|
|
torch.float8_e4m3fn)
|
|
|
|
|
|
def is_fp8(x: Union[torch.dtype, torch.Tensor]) -> bool:
|
|
if isinstance(x, torch.Tensor):
|
|
x = x.dtype
|
|
return x == torch.float8_e4m3fn or x == torch.float8_e4m3fnuz
|
|
|
|
|
|
def apply_w8a8_block_fp8_linear(
|
|
input: torch.Tensor,
|
|
weight: torch.Tensor,
|
|
block_size: List[int],
|
|
weight_scale: torch.Tensor,
|
|
input_scale: Optional[torch.Tensor] = None,
|
|
bias: Optional[torch.Tensor] = None,
|
|
cutlass_block_fp8_supported: bool = CUTLASS_BLOCK_FP8_SUPPORTED,
|
|
) -> torch.Tensor:
|
|
assert input_scale is None
|
|
# View input as 2D matrix for fp8 methods
|
|
input_2d = input.view(-1, input.shape[-1])
|
|
output_shape = [*input.shape[:-1], weight.shape[0]]
|
|
|
|
shape_supported_by_cutlass = (weight.shape[0] % 128 == 0
|
|
and weight.shape[1] % 128 == 0)
|
|
if current_platform.is_rocm():
|
|
scale_a_shape = ((input_2d.shape[-1] // block_size[1], ) +
|
|
input_2d.shape[:-1])[::-1]
|
|
scale_b_shape = (weight_scale.view(-1, 1)
|
|
if weight_scale.dim() <= 1 else weight_scale.T).shape
|
|
ar, ac = scale_a_shape
|
|
br, bc = scale_b_shape
|
|
if (ac > 1 or bc > 1 or ar not in (1, input_2d.shape[0])
|
|
or br not in (1, weight.shape[0])):
|
|
shape_supported_by_cutlass = False
|
|
if cutlass_block_fp8_supported and shape_supported_by_cutlass:
|
|
q_input, x_scale = per_token_group_quant_fp8(input_2d,
|
|
block_size[1],
|
|
column_major_scales=True)
|
|
output = ops.cutlass_scaled_mm(q_input,
|
|
weight.T,
|
|
out_dtype=input.dtype,
|
|
scale_a=x_scale,
|
|
scale_b=weight_scale.T)
|
|
else:
|
|
q_input, x_scale = per_token_group_quant_fp8(input_2d,
|
|
block_size[1],
|
|
column_major_scales=False)
|
|
output = w8a8_block_fp8_matmul(q_input,
|
|
weight,
|
|
x_scale,
|
|
weight_scale,
|
|
block_size,
|
|
output_dtype=input.dtype)
|
|
if bias is not None:
|
|
output = output + bias
|
|
return output.to(dtype=input.dtype).view(*output_shape)
|
|
|
|
|
|
def apply_w8a8_block_fp8_linear_fake(
|
|
input: torch.Tensor,
|
|
weight: torch.Tensor,
|
|
block_size: List[int],
|
|
weight_scale: torch.Tensor,
|
|
input_scale: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
output_shape = [*input.shape[:-1], weight.shape[0]]
|
|
return torch.empty(output_shape, dtype=input.dtype, device=input.device)
|
|
|
|
|
|
direct_register_custom_op(
|
|
op_name="apply_w8a8_block_fp8_linear",
|
|
op_func=apply_w8a8_block_fp8_linear,
|
|
mutates_args=[],
|
|
fake_impl=apply_w8a8_block_fp8_linear_fake,
|
|
)
|
|
|
|
|
|
# Unify the interface between `apply_w8a8_block_fp8_linear` and
|
|
# `apply_fp8_linear`
|
|
# NOTE(lucas): this is quite messy, we should think through this more formally
|
|
def apply_fp8_linear_generic(
|
|
input: torch.Tensor,
|
|
weight: torch.Tensor,
|
|
weight_scale: torch.Tensor,
|
|
input_group_shape: Tuple[int, int],
|
|
weight_group_shape: Tuple[int, int],
|
|
input_scale: Optional[torch.Tensor] = None, # static scale if one
|
|
cutlass_fp8_supported: bool = CUTLASS_FP8_SUPPORTED,
|
|
cutlass_block_fp8_supported: bool = CUTLASS_BLOCK_FP8_SUPPORTED,
|
|
) -> torch.Tensor:
|
|
# View input as 2D matrix for fp8 methods
|
|
input = input.view(-1, input.shape[-1])
|
|
|
|
weight_group_shape = _normalize_quant_group_shape(\
|
|
weight, weight_group_shape)
|
|
input_group_shape = _normalize_quant_group_shape(input, input_group_shape)
|
|
|
|
def is_dim_blocked(dim, shape, group_shape):
|
|
return group_shape < shape[dim] and group_shape > 1
|
|
|
|
if is_dim_blocked(0, weight.shape, weight_group_shape[0])\
|
|
and is_dim_blocked(1, weight.shape, weight_group_shape[1]) and\
|
|
input_group_shape == (1, weight_group_shape[1]):
|
|
return apply_w8a8_block_fp8_linear(
|
|
input,
|
|
weight,
|
|
list(weight_group_shape),
|
|
weight_scale,
|
|
cutlass_block_fp8_supported=cutlass_block_fp8_supported)
|
|
else:
|
|
# Despite having linear in the it doesn't conform to
|
|
# `torch.nn.functional.linear` which is defined as `input @ weight.T`
|
|
# so we explicitly transpose the weight matrix here
|
|
return apply_fp8_linear(input, weight.T, weight_scale.T,
|
|
cutlass_fp8_supported=cutlass_fp8_supported,
|
|
use_per_token_if_dynamic=\
|
|
(input_group_shape == (1, input.shape[1])))
|
|
|
|
|
|
def input_to_float8(
|
|
x: torch.Tensor,
|
|
dtype: Optional[torch.dtype] = None
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""This function quantizes input values to float8 values "
|
|
"with tensor-wise quantization."""
|
|
if dtype is None:
|
|
dtype = (torch.float8_e4m3fnuz
|
|
if current_platform.is_rocm() else torch.float8_e4m3fn)
|
|
finfo = torch.finfo(dtype)
|
|
min_val, max_val = x.aminmax()
|
|
amax = torch.maximum(min_val.abs(), max_val.abs()).clamp(min=1e-12)
|
|
scale = finfo.max / amax
|
|
x_scl_sat = (x * scale).clamp(min=finfo.min, max=finfo.max)
|
|
return x_scl_sat.to(dtype).contiguous(), scale.float().reciprocal()
|
|
|
|
|
|
def block_quant_to_tensor_quant(
|
|
x_q_block: torch.Tensor,
|
|
x_s: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""This function converts block-wise quantization to tensor-wise
|
|
quantization. The inputs are block-wise quantization tensor `x_q_block`,
|
|
block-wise quantization scale and the block size.
|
|
The outputs are tensor-wise quantization tensor and tensor-wise
|
|
quantization scale. Note only float8 is supported for now.
|
|
"""
|
|
x_dq_block = scaled_dequantize(x_q_block, x_s)
|
|
x_q_tensor, scale = input_to_float8(x_dq_block, dtype=x_q_block.dtype)
|
|
return x_q_tensor, scale
|
|
|
|
|
|
@triton.jit
|
|
def _per_token_group_quant_fp8(
|
|
# Pointers to inputs and output
|
|
y_ptr,
|
|
y_q_ptr,
|
|
y_s_ptr,
|
|
group_size,
|
|
# Num columns of y
|
|
y_num_columns,
|
|
y_row_stride,
|
|
# Avoid to divide zero
|
|
eps,
|
|
# Information for float8
|
|
fp8_min,
|
|
fp8_max,
|
|
# Meta-parameters
|
|
BLOCK: tl.constexpr,
|
|
):
|
|
"""A Triton-accelerated function to perform per-token-group
|
|
quantization on a tensor.
|
|
This function converts the tensor values into float8 values.
|
|
"""
|
|
groups_per_row = y_num_columns // group_size
|
|
|
|
# Map the program id to the row of X and Y it should compute.
|
|
g_id = tl.program_id(0)
|
|
row = g_id // groups_per_row
|
|
row_g_id = g_id % groups_per_row
|
|
|
|
y_ptr += (row * y_row_stride) + (row_g_id * group_size)
|
|
y_q_ptr += g_id * group_size
|
|
y_s_ptr += g_id
|
|
|
|
cols = tl.arange(0, BLOCK) # N <= BLOCK
|
|
mask = cols < group_size
|
|
|
|
y = tl.load(y_ptr + cols, mask=mask, other=0.0).to(tl.float32)
|
|
# Quant
|
|
_absmax = tl.maximum(tl.max(tl.abs(y)), eps)
|
|
y_s = _absmax / fp8_max
|
|
y_q = tl.clamp(y / y_s, fp8_min, fp8_max).to(y_q_ptr.dtype.element_ty)
|
|
|
|
tl.store(y_q_ptr + cols, y_q, mask=mask)
|
|
tl.store(y_s_ptr, y_s)
|
|
|
|
|
|
@triton.jit
|
|
def _per_token_group_quant_fp8_colmajor(
|
|
# Pointers to inputs and output
|
|
y_ptr,
|
|
y_q_ptr,
|
|
y_s_ptr,
|
|
group_size,
|
|
# Num columns of y
|
|
y_num_columns,
|
|
y_row_stride,
|
|
# Stride from one column to the next of y_s
|
|
y_s_col_stride,
|
|
# Avoid to divide zero
|
|
eps,
|
|
# Information for float8
|
|
fp8_min,
|
|
fp8_max,
|
|
# Meta-parameters
|
|
BLOCK: tl.constexpr,
|
|
):
|
|
"""A Triton-accelerated function to perform per-token-group
|
|
quantization on a tensor.
|
|
This function converts the tensor values into float8 values.
|
|
"""
|
|
groups_per_row = y_num_columns // group_size
|
|
|
|
# Map the program id to the row of X and Y it should compute.
|
|
g_id = tl.program_id(0)
|
|
row = g_id // groups_per_row
|
|
row_g_id = g_id % groups_per_row
|
|
|
|
y_ptr += (row * y_row_stride) + (row_g_id * group_size)
|
|
y_q_ptr += g_id * group_size
|
|
|
|
# Convert g_id the flattened block coordinate to 2D so we can index
|
|
# into the output y_scales matrix
|
|
blocks_per_row = y_num_columns // group_size
|
|
scale_col = g_id % blocks_per_row
|
|
scale_row = g_id // blocks_per_row
|
|
y_s_ptr += scale_col * y_s_col_stride + scale_row
|
|
|
|
cols = tl.arange(0, BLOCK) # group_size <= BLOCK
|
|
mask = cols < group_size
|
|
|
|
y = tl.load(y_ptr + cols, mask=mask, other=0.0).to(tl.float32)
|
|
# Quant
|
|
_absmax = tl.maximum(tl.max(tl.abs(y)), eps)
|
|
y_s = _absmax / fp8_max
|
|
y_q = tl.clamp(y / y_s, fp8_min, fp8_max).to(y_q_ptr.dtype.element_ty)
|
|
|
|
tl.store(y_q_ptr + cols, y_q, mask=mask)
|
|
tl.store(y_s_ptr, y_s)
|
|
|
|
|
|
def per_token_group_quant_fp8(
|
|
x: torch.Tensor,
|
|
group_size: int,
|
|
eps: float = 1e-10,
|
|
dtype: Optional[torch.dtype] = None,
|
|
column_major_scales: bool = False,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Function to perform per-token-group quantization on an input tensor `x`.
|
|
It converts the tensor values into signed float8 values and returns the
|
|
quantized tensor along with the scaling factor used for quantization.
|
|
Args:
|
|
x: The input tensor with ndim >= 2.
|
|
group_size: The group size used for quantization.
|
|
eps: The minimum to avoid dividing zero.
|
|
dtype: The dype of output tensor. Note that only `torch.float8_e4m3fn`
|
|
is supported for now.
|
|
Returns:
|
|
Tuple[torch.Tensor, torch.Tensor]: The quantized tensor and the
|
|
scaling factor for quantization.
|
|
"""
|
|
if dtype is None:
|
|
dtype = (torch.float8_e4m3fnuz
|
|
if current_platform.is_rocm() else torch.float8_e4m3fn)
|
|
assert (x.shape[-1] % group_size == 0), (
|
|
f"the last dimension of `x` {x.shape[-1]} must be divisible "
|
|
f"by `group_size` {group_size}")
|
|
assert x.stride(-1) == 1, "`x` groups must be contiguous"
|
|
|
|
finfo = torch.finfo(dtype)
|
|
fp8_min = finfo.min
|
|
fp8_max = finfo.max
|
|
|
|
x_q = torch.empty_like(x, device=x.device, dtype=dtype)
|
|
M = x.numel() // group_size
|
|
N = group_size
|
|
if column_major_scales:
|
|
shape = (x.shape[-1] // group_size, ) + x.shape[:-1]
|
|
x_s = torch.empty(shape, device=x.device,
|
|
dtype=torch.float32).permute(-1, -2)
|
|
else:
|
|
shape = x.shape[:-1] + (x.shape[-1] // group_size, )
|
|
x_s = torch.empty(shape, device=x.device, dtype=torch.float32)
|
|
|
|
BLOCK = triton.next_power_of_2(N)
|
|
# heuristics for number of warps
|
|
num_warps = min(max(BLOCK // 256, 1), 8)
|
|
num_stages = 1
|
|
if column_major_scales:
|
|
_per_token_group_quant_fp8_colmajor[(M, )](
|
|
x,
|
|
x_q,
|
|
x_s,
|
|
group_size,
|
|
x.shape[1],
|
|
x.stride(0),
|
|
x_s.stride(1),
|
|
eps,
|
|
fp8_min=fp8_min,
|
|
fp8_max=fp8_max,
|
|
BLOCK=BLOCK,
|
|
num_warps=num_warps,
|
|
num_stages=num_stages,
|
|
)
|
|
else:
|
|
_per_token_group_quant_fp8[(M, )](
|
|
x,
|
|
x_q,
|
|
x_s,
|
|
group_size,
|
|
x.shape[1],
|
|
x.stride(0),
|
|
eps,
|
|
fp8_min=fp8_min,
|
|
fp8_max=fp8_max,
|
|
BLOCK=BLOCK,
|
|
num_warps=num_warps,
|
|
num_stages=num_stages,
|
|
)
|
|
|
|
return x_q, x_s
|
|
|
|
|
|
@triton.jit
|
|
def _w8a8_block_fp8_matmul(
|
|
# Pointers to inputs and output
|
|
A,
|
|
B,
|
|
C,
|
|
As,
|
|
Bs,
|
|
# Shape for matmul
|
|
M,
|
|
N,
|
|
K,
|
|
# Block size for block-wise quantization
|
|
group_n,
|
|
group_k,
|
|
# Stride for inputs and output
|
|
stride_am,
|
|
stride_ak,
|
|
stride_bk,
|
|
stride_bn,
|
|
stride_cm,
|
|
stride_cn,
|
|
stride_As_m,
|
|
stride_As_k,
|
|
stride_Bs_k,
|
|
stride_Bs_n,
|
|
# Meta-parameters
|
|
BLOCK_SIZE_M: tl.constexpr,
|
|
BLOCK_SIZE_N: tl.constexpr,
|
|
BLOCK_SIZE_K: tl.constexpr,
|
|
GROUP_SIZE_M: tl.constexpr,
|
|
):
|
|
"""Triton-accelerated function used to perform linear operations (dot
|
|
product) on input tensors `A` and `B` with block-wise quantization, and
|
|
store the result in output tensor `C`.
|
|
"""
|
|
|
|
pid = tl.program_id(axis=0)
|
|
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
|
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
|
|
num_pid_in_group = GROUP_SIZE_M * num_pid_n
|
|
group_id = pid // num_pid_in_group
|
|
first_pid_m = group_id * GROUP_SIZE_M
|
|
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
|
pid_m = first_pid_m + (pid % group_size_m)
|
|
pid_n = (pid % num_pid_in_group) // group_size_m
|
|
|
|
offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
|
|
offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
|
|
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
|
a_ptrs = A + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
|
|
b_ptrs = B + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
|
|
|
|
As_ptrs = As + offs_am * stride_As_m
|
|
offs_bsn = offs_bn // group_n
|
|
Bs_ptrs = Bs + offs_bsn * stride_Bs_n
|
|
|
|
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
|
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
|
|
a = tl.load(a_ptrs,
|
|
mask=offs_k[None, :] < K - k * BLOCK_SIZE_K,
|
|
other=0.0)
|
|
b = tl.load(b_ptrs,
|
|
mask=offs_k[:, None] < K - k * BLOCK_SIZE_K,
|
|
other=0.0)
|
|
|
|
k_start = k * BLOCK_SIZE_K
|
|
offs_ks = k_start // group_k
|
|
a_s = tl.load(As_ptrs + offs_ks * stride_As_k)
|
|
b_s = tl.load(Bs_ptrs + offs_ks * stride_Bs_k)
|
|
|
|
accumulator += tl.dot(a, b) * a_s[:, None] * b_s[None, :]
|
|
a_ptrs += BLOCK_SIZE_K * stride_ak
|
|
b_ptrs += BLOCK_SIZE_K * stride_bk
|
|
|
|
if C.dtype.element_ty == tl.bfloat16:
|
|
c = accumulator.to(tl.bfloat16)
|
|
elif C.dtype.element_ty == tl.float16:
|
|
c = accumulator.to(tl.float16)
|
|
else:
|
|
c = accumulator.to(tl.float32)
|
|
|
|
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
|
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
|
c_ptrs = C + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
|
|
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
|
|
tl.store(c_ptrs, c, mask=c_mask)
|
|
|
|
|
|
@functools.lru_cache
|
|
def get_w8a8_block_fp8_configs(N: int, K: int, block_n: int,
|
|
block_k: int) -> Optional[Dict[int, Any]]:
|
|
"""
|
|
Return optimized configurations for the w8a8 block fp8 kernel.
|
|
The return value will be a dictionary that maps an irregular grid of
|
|
batch sizes to configurations of the w8a8 block fp8 kernel. To evaluate the
|
|
kernel on a given batch size bs, the closest batch size in the grid should
|
|
be picked and the associated configuration chosen to invoke the kernel.
|
|
"""
|
|
|
|
# First look up if an optimized configuration is available in the configs
|
|
# directory
|
|
device_name = current_platform.get_device_name().replace(" ", "_")
|
|
json_file_name = f"N={N},K={K},device_name={device_name},dtype=fp8_w8a8,block_shape=[{block_n},{block_k}].json" # noqa: E501
|
|
|
|
config_file_path = os.path.join(
|
|
os.path.dirname(os.path.realpath(__file__)), "configs", json_file_name)
|
|
if os.path.exists(config_file_path):
|
|
with open(config_file_path) as f:
|
|
logger.info(
|
|
"Using configuration from %s for W8A8 Block FP8 kernel.",
|
|
config_file_path,
|
|
)
|
|
# If a configuration has been found, return it
|
|
return {int(key): val for key, val in json.load(f).items()}
|
|
|
|
# If no optimized configuration is available, we will use the default
|
|
# configuration
|
|
logger.warning(
|
|
"Using default W8A8 Block FP8 kernel config. Performance might "
|
|
"be sub-optimal! Config file not found at %s",
|
|
config_file_path,
|
|
)
|
|
return None
|
|
|
|
|
|
def w8a8_block_fp8_matmul(
|
|
A: torch.Tensor,
|
|
B: torch.Tensor,
|
|
As: torch.Tensor,
|
|
Bs: torch.Tensor,
|
|
block_size: List[int],
|
|
output_dtype: torch.dtype = torch.float16,
|
|
) -> torch.Tensor:
|
|
"""This function performs matrix multiplication with block-wise
|
|
quantization.
|
|
It takes two input tensors `A` and `B` with scales `As` and `Bs`.
|
|
The output is returned in the specified `output_dtype`.
|
|
Args:
|
|
A: The input tensor, e.g., activation.
|
|
B: The input tensor, e.g., weight.
|
|
As: The per-token-group quantization scale for `A`.
|
|
Bs: The per-block quantization scale for `B`.
|
|
block_size: The block size for per-block quantization. It should
|
|
be 2-dim, e.g., [128, 128].
|
|
output_dytpe: The dtype of the returned tensor.
|
|
Returns:
|
|
torch.Tensor: The result of matmul.
|
|
"""
|
|
assert len(block_size) == 2
|
|
block_n, block_k = block_size[0], block_size[1]
|
|
|
|
assert A.shape[-1] == B.shape[-1]
|
|
assert A.shape[:-1] == As.shape[:-1] and A.is_contiguous()
|
|
assert triton.cdiv(A.shape[-1], block_k) == As.shape[-1]
|
|
M = A.numel() // A.shape[-1]
|
|
|
|
assert B.ndim == 2 and Bs.ndim == 2
|
|
N, K = B.shape
|
|
assert triton.cdiv(N, block_n) == Bs.shape[0]
|
|
assert triton.cdiv(K, block_k) == Bs.shape[1]
|
|
|
|
C_shape = A.shape[:-1] + (N, )
|
|
C = A.new_empty(C_shape, dtype=output_dtype)
|
|
|
|
configs = get_w8a8_block_fp8_configs(N, K, block_size[0], block_size[1])
|
|
if configs:
|
|
# Get the optimal config if there is one
|
|
config = configs[min(configs.keys(), key=lambda x: abs(x - M))]
|
|
else:
|
|
# Default config
|
|
# Block-wise quant: BLOCK_SIZE_N must be divisible by block_size[0]
|
|
# BLOCK_SIZE_K must be divisible by block_size[1]
|
|
config = {
|
|
"BLOCK_SIZE_M": 64,
|
|
"BLOCK_SIZE_N": block_size[0],
|
|
"BLOCK_SIZE_K": block_size[1],
|
|
"GROUP_SIZE_M": 32,
|
|
"num_warps": 4,
|
|
"num_stages": 2,
|
|
}
|
|
|
|
def grid(META):
|
|
return (triton.cdiv(M, META["BLOCK_SIZE_M"]) *
|
|
triton.cdiv(N, META["BLOCK_SIZE_N"]), )
|
|
|
|
_w8a8_block_fp8_matmul[grid](
|
|
A,
|
|
B,
|
|
C,
|
|
As,
|
|
Bs,
|
|
M,
|
|
N,
|
|
K,
|
|
block_n,
|
|
block_k,
|
|
A.stride(-2),
|
|
A.stride(-1),
|
|
B.stride(1),
|
|
B.stride(0),
|
|
C.stride(-2),
|
|
C.stride(-1),
|
|
As.stride(-2),
|
|
As.stride(-1),
|
|
Bs.stride(1),
|
|
Bs.stride(0),
|
|
**config,
|
|
)
|
|
|
|
return C
|