mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 08:14:54 +08:00
208 lines
8.0 KiB
Python
208 lines
8.0 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
from typing import Optional, Tuple
|
|
|
|
import torch
|
|
|
|
from vllm.platforms import current_platform
|
|
from vllm.scalar_type import ScalarType, scalar_types
|
|
|
|
MINIMUM_BITBLAS_VERSION = "0.1.0"
|
|
|
|
BITBLAS_MIN_WEIGHT_SIZE_N = 16
|
|
BITBLAS_MIN_WEIGHT_SIZE_K = 16
|
|
GPTQ_BITBLAS_MAX_PARALLEL = 16
|
|
|
|
BITBLAS_SUPPORTED_GROUP_SIZES = [-1, 32, 64, 128]
|
|
|
|
# For dynamic shape code generation
|
|
BITBLAS_OPTIMIZE_FEATURES = [1, 16, 32, 64, 128, 256, 512, 1024]
|
|
# If want to enable high performance for contiguous batching
|
|
# Please use the following values
|
|
BITBLAS_OPTIMIZE_FEATURES_CONTIGUOUS = [16, 32, 64, 128, 256, 512, 1024]
|
|
|
|
BITBLAS_SUPPORTED_NUM_BITS = [1, 2, 4, 8]
|
|
BITBLAS_SUPPORTED_SYM = [False, True]
|
|
|
|
|
|
# Determines the supported quantization types for BitBLAS based on the
|
|
# device's capability and whether zero-point (zp) is used.
|
|
def query_bitblas_supported_quant_types(has_zp: bool,
|
|
device_capability: Optional[int] = None
|
|
):
|
|
if device_capability is None:
|
|
capability_tuple = current_platform.get_device_capability()
|
|
device_capability = (-1 if capability_tuple is None else
|
|
capability_tuple.to_int())
|
|
|
|
if device_capability < 70:
|
|
return []
|
|
|
|
if has_zp:
|
|
# AWQ style, unsigned + runtime zero-point
|
|
return [scalar_types.uint4, scalar_types.uint8]
|
|
else:
|
|
# GPTQ style, unsigned + symmetric bias
|
|
# TODO: once fp8_bitblas is merged into "gptq_bitblas" we should be able
|
|
# to add `scalar_types.float8_e4m3fn` here
|
|
return [scalar_types.uint4b8, scalar_types.uint8b128]
|
|
|
|
|
|
def _check_bitblas_supported(
|
|
quant_type: ScalarType,
|
|
group_size: Optional[int],
|
|
has_zp: bool,
|
|
device_capability: Optional[int] = None) -> Tuple[bool, Optional[str]]:
|
|
|
|
if device_capability is None:
|
|
capability_tuple = current_platform.get_device_capability()
|
|
device_capability = (-1 if capability_tuple is None else
|
|
capability_tuple.to_int())
|
|
|
|
supported_types = query_bitblas_supported_quant_types(
|
|
has_zp, device_capability)
|
|
|
|
if quant_type not in supported_types:
|
|
return (False, f"BitBLAS does not support weight_bits = {quant_type}. "
|
|
f"Only types = {supported_types} "
|
|
f"are supported (for group_size = {group_size}, "
|
|
f"device_capability = {device_capability}, zp = {has_zp}).")
|
|
if (group_size is None or group_size not in BITBLAS_SUPPORTED_GROUP_SIZES):
|
|
return (False, f"BitBLAS does not support group_size = {group_size}. "
|
|
f"Only group_sizes = {BITBLAS_SUPPORTED_GROUP_SIZES} "
|
|
"are supported.")
|
|
|
|
# Finally, check if bitblas is installed
|
|
try:
|
|
import bitblas
|
|
if bitblas.__version__ < MINIMUM_BITBLAS_VERSION:
|
|
raise ImportError("bitblas version is wrong. Please "
|
|
f"install bitblas>={MINIMUM_BITBLAS_VERSION}")
|
|
except ImportError:
|
|
return False, "BitBLAS is not installed."
|
|
|
|
return True, None
|
|
|
|
|
|
def check_bitblas_supported(quant_type: ScalarType,
|
|
group_size: int,
|
|
has_zp: bool = False,
|
|
device_capability: Optional[int] = None) -> bool:
|
|
cond, _ = _check_bitblas_supported(quant_type, group_size, has_zp,
|
|
device_capability)
|
|
return cond
|
|
|
|
|
|
def verify_bitblas_supported(quant_type: ScalarType,
|
|
group_size: int,
|
|
has_zp: bool = False) -> None:
|
|
cond, err_msg = _check_bitblas_supported(quant_type, group_size, has_zp)
|
|
if not cond:
|
|
assert err_msg is not None
|
|
raise ValueError(err_msg)
|
|
|
|
|
|
def verify_bitblas_supports_shape(output_size_per_partition: int,
|
|
input_size_per_partition: int,
|
|
input_size: int, group_size: int) -> None:
|
|
|
|
# Validate output_size_per_partition
|
|
if output_size_per_partition % BITBLAS_MIN_WEIGHT_SIZE_N != 0:
|
|
raise ValueError(f"Weight output_size_per_partition = "
|
|
f"{output_size_per_partition} is not divisible by "
|
|
f" min_thread_n = {BITBLAS_MIN_WEIGHT_SIZE_N}. "
|
|
"Consider reducing tensor_parallel_size or running "
|
|
"with --quantization gptq.")
|
|
|
|
# Validate input_size_per_partition
|
|
if input_size_per_partition % BITBLAS_MIN_WEIGHT_SIZE_K != 0:
|
|
raise ValueError(f"Weight input_size_per_partition = "
|
|
f"{input_size_per_partition} is not divisible "
|
|
f"by min_thread_k = {BITBLAS_MIN_WEIGHT_SIZE_K}. "
|
|
"Consider reducing tensor_parallel_size or running "
|
|
"with --quantization gptq.")
|
|
|
|
if (group_size < input_size
|
|
and input_size_per_partition % group_size != 0):
|
|
raise ValueError(
|
|
f"Weight input_size_per_partition = {input_size_per_partition}"
|
|
f" is not divisible by group_size = {group_size}."
|
|
"Consider reducing tensor_parallel_size or running "
|
|
"with --quantization gptq.")
|
|
|
|
|
|
def check_bitblas_supports_shape(output_size_per_partition: int,
|
|
input_size_per_partition: int,
|
|
input_size: int, group_size: int) \
|
|
-> Tuple[bool, Optional[str]]:
|
|
try:
|
|
verify_bitblas_supports_shape(output_size_per_partition,
|
|
input_size_per_partition, input_size,
|
|
group_size)
|
|
except ValueError as e:
|
|
return False, e.__str__()
|
|
return True, None
|
|
|
|
|
|
def bitblas_is_k_full(act_order: bool, is_row_parallel: bool) -> bool:
|
|
return (not act_order) or (act_order and not is_row_parallel)
|
|
|
|
|
|
def bitblas_repeat_scales_on_all_ranks(act_order: bool, group_size: int,
|
|
is_row_parallel: bool) -> bool:
|
|
# Need to repeat scales on every rank if act_ordering or
|
|
# channelwise and RowParallelLinear
|
|
is_channelwise = group_size == -1
|
|
return act_order or (is_channelwise and is_row_parallel)
|
|
|
|
|
|
def bitblas_make_empty_g_idx(device: torch.device) -> torch.Tensor:
|
|
return torch.nn.Parameter(torch.empty(0, dtype=torch.int, device=device),
|
|
requires_grad=False)
|
|
|
|
|
|
def bitblas_make_empty_zp(device: torch.device) -> torch.Tensor:
|
|
return torch.nn.Parameter(torch.empty(0, dtype=torch.int, device=device),
|
|
requires_grad=False)
|
|
|
|
|
|
def bitblas_sort_g_idx(
|
|
g_idx: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
g_idx_sort_indices = torch.argsort(g_idx).to(torch.int)
|
|
return g_idx[g_idx_sort_indices], g_idx_sort_indices
|
|
|
|
|
|
def unpack_gptq_qzeros(qzeros, bits, is_gptq_v2=False) -> torch.Tensor:
|
|
qzeros = qzeros.view(torch.int32)
|
|
elems_per_int32 = 32 // bits
|
|
unpacked_zeros = torch.zeros(
|
|
(qzeros.shape[0], qzeros.shape[1] * elems_per_int32),
|
|
dtype=torch.int8,
|
|
device=qzeros.device,
|
|
requires_grad=False,
|
|
)
|
|
|
|
for col in range(unpacked_zeros.shape[1]):
|
|
i = col % elems_per_int32
|
|
unpacked_zeros[:, col] = (qzeros[:, col // elems_per_int32] >>
|
|
(bits * i)) & 0xF
|
|
if not is_gptq_v2:
|
|
return unpacked_zeros + 1
|
|
return unpacked_zeros
|
|
|
|
|
|
def unpack_gptq_qweight(qweight, bits):
|
|
qweight = qweight.view(torch.int8)
|
|
elems_per_int8 = 8 // bits
|
|
unpacked_weight = torch.zeros(
|
|
(qweight.shape[0], qweight.shape[1] * elems_per_int8),
|
|
dtype=torch.int8,
|
|
device=qweight.device,
|
|
requires_grad=False,
|
|
)
|
|
for col in range(unpacked_weight.shape[1]):
|
|
i = col % elems_per_int8
|
|
unpacked_weight[:, col] = (qweight[:, col // elems_per_int8] >>
|
|
(bits * i))
|
|
|
|
return torch.bitwise_and(unpacked_weight, 2**bits - 1)
|