726 lines
28 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from typing import Iterable, Optional, Set, Tuple
import torch
from torch import nn
from transformers import BertConfig
from vllm.attention import Attention, AttentionType
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, PoolerConfig, VllmConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.forward_context import get_forward_context
from vllm.model_executor.layers.activation import (get_act_and_mul_fn,
get_act_fn)
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.pooler import (CrossEncodingPooler, Pooler,
PoolingType)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.pooling_metadata import PoolingMetadata
from vllm.sequence import IntermediateTensors, PoolerOutput
from vllm.transformers_utils.config import (
get_cross_encoder_activation_function)
from .interfaces import SupportsCrossEncoding, SupportsQuant, SupportsV0Only
from .utils import WeightsMapper, maybe_prefix
class BertEmbedding(nn.Module):
def __init__(self, config: BertConfig):
super().__init__()
self.size = config.hidden_size
self.word_embeddings = VocabParallelEmbedding(config.vocab_size,
config.hidden_size)
self.token_type_embeddings = VocabParallelEmbedding(
config.type_vocab_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
self.position_embedding_type = config.position_embedding_type
if self.position_embedding_type == "absolute":
self.position_embeddings = VocabParallelEmbedding(
config.max_position_embeddings, config.hidden_size)
self.position_ids = nn.Parameter(
torch.empty((1, config.max_position_embeddings)), )
elif self.position_embedding_type == "rotary":
self.position_embeddings = None
self.position_ids = None
else:
raise ValueError("Only 'absolute' and 'rotary' " +
"position_embedding_type is supported")
def forward(
self,
input_ids: torch.Tensor,
seq_lens: torch.Tensor,
position_ids: torch.Tensor,
token_type_ids: Optional[torch.Tensor] = None,
) -> torch.Tensor:
input_shape = input_ids.size()
# Input embeddings.
inputs_embeds = self.word_embeddings(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape,
dtype=torch.long,
device=inputs_embeds.device)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
return embeddings
class BertPooler(nn.Module):
def __init__(self, config: BertConfig):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[0, :]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
@support_torch_compile
class BertEncoder(nn.Module):
def __init__(self,
vllm_config: VllmConfig,
bias: bool = True,
rotary_kwargs: Optional[dict] = None,
prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.layer = nn.ModuleList([
BertLayer(config=config,
cache_config=cache_config,
quant_config=quant_config,
bias=bias,
rotary_kwargs=rotary_kwargs,
prefix=f"{prefix}.layer.{layer_idx}")
for layer_idx in range(config.num_hidden_layers)
])
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
for layer in self.layer:
hidden_states = layer(positions, hidden_states)
return hidden_states
class BertLayer(nn.Module):
def __init__(self,
config: BertConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
bias: bool = True,
rotary_kwargs: Optional[dict] = None,
prefix: str = ""):
super().__init__()
self.attention = BertAttention(
hidden_size=config.hidden_size,
num_attention_heads=config.num_attention_heads,
layer_norm_eps=config.layer_norm_eps,
cache_config=cache_config,
quant_config=quant_config,
bias=bias,
rotary_kwargs=rotary_kwargs,
prefix=f"{prefix}.attention")
if config.hidden_act in ["silu", "gelu_and_mul"]:
self.intermediate = BertGatedIntermediate(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.intermediate")
else:
self.intermediate = BertIntermediate(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.intermediate")
self.output = BertOutput(hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
layer_norm_eps=config.layer_norm_eps,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.output")
def forward(self, positions: torch.Tensor, hidden_states: torch.Tensor):
attn_output = self.attention(positions, hidden_states)
intermediate_output = self.intermediate(attn_output)
output = self.output(intermediate_output, attn_output)
return output
class BertAttention(nn.Module):
def __init__(
self,
hidden_size: int,
num_attention_heads: int,
layer_norm_eps: float,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
bias: bool = True,
rotary_kwargs: Optional[dict] = None,
prefix: str = "",
):
super().__init__()
self.self = BertSelfAttention(hidden_size=hidden_size,
num_attention_heads=num_attention_heads,
cache_config=cache_config,
quant_config=quant_config,
bias=bias,
rotary_kwargs=rotary_kwargs,
prefix=f"{prefix}.output")
self.output = BertSelfOutput(hidden_size=hidden_size,
layer_norm_eps=layer_norm_eps,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.output")
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
self_output = self.self(positions, hidden_states)
return self.output(self_output, hidden_states)
class BertSelfAttention(nn.Module):
def __init__(
self,
hidden_size: int,
num_attention_heads: int,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
bias: bool = True,
rotary_kwargs: Optional[dict] = None,
prefix: str = "",
):
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_attention_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = self.total_num_heads
self.head_dim = self.hidden_size // self.total_num_heads
assert self.head_dim * self.total_num_heads == self.hidden_size
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.qkv_proj = QKVParallelLinear(
hidden_size=self.hidden_size,
head_size=self.head_dim,
total_num_heads=self.total_num_heads,
total_num_kv_heads=self.total_num_kv_heads,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj")
if rotary_kwargs:
self.rotary_emb = get_rope(**rotary_kwargs)
else:
self.rotary_emb = None
self.attn = Attention(num_heads=self.num_heads,
head_size=self.head_dim,
scale=self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
attn_type=AttentionType.ENCODER_ONLY)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
if self.rotary_emb:
q, k = self.rotary_emb(positions, q, k)
output = self.attn(q, k, v)
return output
class BertSelfOutput(nn.Module):
def __init__(self,
hidden_size: int,
layer_norm_eps: float,
bias: bool = True,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = ""):
super().__init__()
self.dense = RowParallelLinear(input_size=hidden_size,
output_size=hidden_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.dense")
self.LayerNorm = nn.LayerNorm(hidden_size, eps=layer_norm_eps)
def forward(self, hidden_states: torch.Tensor,
input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.dense(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertIntermediate(nn.Module):
def __init__(self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
bias: bool = True,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = ""):
super().__init__()
self.dense = ColumnParallelLinear(input_size=hidden_size,
output_size=intermediate_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.dense")
self.intermediate_act_fn = get_act_fn(hidden_act)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BertGatedIntermediate(nn.Module):
# for NomciBert and GteModel
def __init__(self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
bias: bool = True,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = ""):
super().__init__()
self.act_fn = get_act_and_mul_fn(hidden_act)
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size,
[intermediate_size] * 2,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
gate_up, _ = self.gate_up_proj(hidden_states)
hidden_states = self.act_fn(gate_up)
return hidden_states
class BertOutput(nn.Module):
def __init__(self,
hidden_size: int,
intermediate_size: int,
layer_norm_eps: float,
bias: bool = True,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = ""):
super().__init__()
self.dense = RowParallelLinear(input_size=intermediate_size,
output_size=hidden_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.dense")
self.LayerNorm = nn.LayerNorm(hidden_size, eps=layer_norm_eps)
def forward(self, hidden_states: torch.Tensor,
input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.dense(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertModel(nn.Module, SupportsQuant):
packed_modules_mapping = {
"qkv_proj": ["query", "key", "value"],
"gate_up_proj": [
"gate_proj",
"up_proj",
],
}
def __init__(self,
*,
vllm_config: VllmConfig,
prefix: str = "",
embedding_class: type = BertEmbedding,
bias: bool = True,
rotary_kwargs: Optional[dict] = None,
add_pooling_layer: bool = False):
super().__init__()
"""
For BertModel, all linear layers have bias.
For NomicBertModel, all linear layers do not have bias.
"""
config = vllm_config.model_config.hf_config
self.embeddings = embedding_class(config)
self.encoder = BertEncoder(vllm_config=vllm_config,
bias=bias,
rotary_kwargs=rotary_kwargs,
prefix=f"{prefix}.encoder")
self.pooler = BertPooler(config) if add_pooling_layer else None
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
attn_metadata = get_forward_context().attn_metadata
assert hasattr(attn_metadata, "seq_lens_tensor")
hidden_states = self.embeddings(
input_ids=input_ids,
seq_lens=attn_metadata.seq_lens_tensor,
position_ids=position_ids,
token_type_ids=token_type_ids)
return self.encoder(position_ids, hidden_states)
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "query", "q"),
("qkv_proj", "key", "k"),
("qkv_proj", "value", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters())
loaded_params: Set[str] = set()
for name, loaded_weight in weights:
if self.pooler is None and "pooler" in name:
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class BertEmbeddingModel(nn.Module, SupportsV0Only, SupportsQuant):
"""A model that uses Bert to provide embedding functionalities.
This class encapsulates the BertModel and provides an interface for
embedding operations and customized pooling functions.
Attributes:
model: An instance of BertModel used for forward operations.
_pooler: An instance of Pooler used for pooling operations.
"""
hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={"model.": ""})
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
pooler_config = vllm_config.model_config.pooler_config
self.config = vllm_config.model_config.hf_config
self.model = self._build_model(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
self._pooler = self._build_pooler(pooler_config)
def forward(
self,
input_ids: Optional[torch.Tensor],
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
return self.model(input_ids=input_ids,
position_ids=positions,
inputs_embeds=inputs_embeds,
intermediate_tensors=intermediate_tensors)
def pooler(
self,
hidden_states: torch.Tensor,
pooling_metadata: PoolingMetadata,
) -> Optional[PoolerOutput]:
return self._pooler(hidden_states, pooling_metadata)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
weights = self.hf_to_vllm_mapper.apply(weights)
weights = ((name, data) for name, data in weights
if not name.startswith("lm_head."))
self.model.load_weights(weights)
def _build_model(self,
vllm_config: VllmConfig,
prefix: str = "") -> BertModel:
return BertModel(vllm_config=vllm_config,
prefix=prefix,
embedding_class=BertEmbedding)
def _build_pooler(self, pooler_config: PoolerConfig) -> Pooler:
return Pooler.from_config_with_defaults(pooler_config,
pooling_type=PoolingType.CLS,
normalize=True,
softmax=False)
class BertForSequenceClassification(nn.Module, SupportsCrossEncoding,
SupportsQuant):
"""A model that uses Bert to provide embedding functionalities.
This class encapsulates the BertModel and provides an interface for
embedding operations and customized pooling functions.
Attributes:
model: An instance of BertModel used for forward operations.
_pooler: An instance of Pooler used for pooling operations.
"""
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
self.default_activation_function = \
get_cross_encoder_activation_function(config)
self.num_labels = config.num_labels
self.bert = BertModel(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "bert"),
embedding_class=BertEmbedding,
add_pooling_layer=True)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self._pooler = CrossEncodingPooler(config, self.classifier,
self.bert.pooler)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
self_weights = []
def weight_filter():
for name, weight in weights:
if name.startswith("bert."):
yield (name[len("bert."):], weight)
else:
self_weights.append((name, weight))
self.bert.load_weights(weight_filter())
params_dict = dict(self.named_parameters())
for name, loaded_weight in self_weights:
if name.startswith("classifier"):
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
def pooler(
self,
hidden_states: torch.Tensor,
pooling_metadata: PoolingMetadata,
) -> Optional[PoolerOutput]:
return self._pooler(hidden_states, pooling_metadata)
def forward(
self,
input_ids: Optional[torch.Tensor],
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
) -> torch.Tensor:
return self.bert(input_ids=input_ids,
position_ids=positions,
inputs_embeds=inputs_embeds,
intermediate_tensors=intermediate_tensors,
token_type_ids=token_type_ids)
class NomicBertEmbeddingModel(BertEmbeddingModel):
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={
"emb_ln": "embeddings.LayerNorm",
"layers": "layer",
"attn.Wqkv": "attention.self.qkv_proj",
"attn.out_proj": "attention.output.dense",
'norm1': "attention.output.LayerNorm",
'mlp.fc11': "intermediate.up_proj",
'mlp.fc12': "intermediate.gate_proj",
'mlp.fc2': "output.dense",
'norm2': "output.LayerNorm",
})
def _build_model(self,
vllm_config: VllmConfig,
prefix: str = "") -> BertModel:
config = vllm_config.model_config.hf_config
assert config.__class__.__name__ == "NomicBertConfig"
assert config.activation_function == "swiglu"
# Assume NomicBertModel all linear layers do not have bias
assert not config.mlp_fc1_bias
assert not config.mlp_fc2_bias
assert not config.qkv_proj_bias
config.layer_norm_eps = config.layer_norm_epsilon
config.position_embedding_type = "rotary"
config.intermediate_size = config.n_inner
config.hidden_act = "silu"
config.hidden_size = config.n_embd
config.num_hidden_layers = config.n_layer
head_dim = config.hidden_size // config.num_attention_heads
rotary_kwargs = {
"head_size": head_dim,
"rotary_dim": getattr(config, "rotary_emb_dim", head_dim),
"max_position": config.max_trained_positions,
"base": config.rotary_emb_base,
"rope_scaling": {
"rope_type": "dynamic",
"factor": config.rotary_scaling_factor
}
}
return BertModel(vllm_config=vllm_config,
prefix=prefix,
bias=False,
rotary_kwargs=rotary_kwargs,
embedding_class=BertEmbedding)
class GteEmbeddingModel(BertEmbeddingModel):
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={
"attention.qkv_proj": "attention.self.qkv_proj",
"attention.o_proj": "attention.output.dense",
'attn_ln': "attention.output.LayerNorm",
'mlp.down_proj': "output.dense",
'mlp_ln': "output.LayerNorm",
})
def _build_model(self,
vllm_config: VllmConfig,
prefix: str = "") -> BertModel:
config = vllm_config.model_config.hf_config
assert config.__class__.__name__ == "GteConfig"
assert config.position_embedding_type == "rope"
assert config.hidden_act == "gelu"
config.position_embedding_type = "rotary"
config.hidden_act = "gelu_and_mul"
head_dim = config.hidden_size // config.num_attention_heads
rotary_kwargs = {
"head_size": head_dim,
"rotary_dim": getattr(config, "rotary_emb_dim", head_dim),
"max_position": config.max_position_embeddings,
"base": config.rope_theta,
}
model = BertModel(vllm_config=vllm_config,
prefix=prefix,
rotary_kwargs=rotary_kwargs,
embedding_class=BertEmbedding)
# GteModel only gate_up_proj does not have bias.
# Hack method learned from vllm/model_executor/models/glm.py
for layer in model.encoder.layer:
layer.intermediate.gate_up_proj.bias = None
layer.intermediate.skip_bias_add = True
return model
def split_up_gate_proj(self, weights: Iterable[Tuple[str, torch.Tensor]]):
n = "mlp.up_gate_proj"
for name, weight in weights:
if n in name:
up, gate = weight.chunk(2, dim=0)
yield name.replace(n, "intermediate.up_proj"), up
yield name.replace(n, "intermediate.gate_proj"), gate
else:
yield name, weight
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
weights = self.hf_to_vllm_mapper.apply(weights)
weights = self.split_up_gate_proj(weights)
self.model.load_weights(weights)