Roger Wang 6c85da3a18
[V1]SupportsV0Only protocol for model definitions (#13959)
Signed-off-by: Roger Wang <ywang@roblox.com>
2025-02-27 20:02:15 -05:00

131 lines
4.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# Adapted from
# https://huggingface.co/Qwen/Qwen2.5-Math-RM-72B/blob/main/modeling_qwen2_rm.py
# Copyright 2024 The Qwen team.
# Copyright 2023 The vLLM team.
"""Inference-only Qwen2-RM model compatible with HuggingFace weights."""
from typing import Iterable, Optional, Set, Tuple, Union
import torch
from torch import nn
from vllm.config import VllmConfig
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.pooler import Pooler, PoolingType, SimplePooler
from vllm.model_executor.pooling_metadata import PoolingMetadata
from vllm.sequence import IntermediateTensors, PoolerOutput
from .interfaces import SupportsLoRA, SupportsPP, SupportsV0Only
from .qwen2 import Qwen2Model
from .utils import AutoWeightsLoader, maybe_prefix
class ReLU(nn.Module):
def __init__(self):
super().__init__()
self.activation = nn.ReLU()
def forward(self, input):
input, _ = input
return self.activation(input)
class Qwen2RewardBaseModel(nn.Module, SupportsLoRA, SupportsPP,
SupportsV0Only):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": [
"gate_proj",
"up_proj",
],
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
self.config = config
self.lora_config = lora_config
self.quant_config = quant_config
self.model = Qwen2Model(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
self.score = nn.Sequential(
ColumnParallelLinear(config.hidden_size,
config.hidden_size,
quant_config=quant_config),
ReLU(),
RowParallelLinear(config.hidden_size,
config.num_labels,
quant_config=quant_config),
)
self._pooler: SimplePooler
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, intermediate_tensors,
inputs_embeds)
logits, _ = self.score(hidden_states)
return logits
def pooler(
self,
hidden_states: torch.Tensor,
pooling_metadata: PoolingMetadata,
) -> Optional[PoolerOutput]:
return self._pooler(hidden_states, pooling_metadata)
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
loader = AutoWeightsLoader(self,
ignore_unexpected_prefixes=["lm_head."])
return loader.load_weights(weights)
class Qwen2ForRewardModel(Qwen2RewardBaseModel):
def __init__(self, *, vllm_config, prefix=""):
vllm_config.model_config.hf_config.num_labels = 1
super().__init__(vllm_config=vllm_config, prefix=prefix)
pooler_config = vllm_config.model_config.pooler_config
self._pooler = Pooler.from_config_with_defaults(
pooler_config,
pooling_type=PoolingType.ALL,
normalize=False,
softmax=False)
class Qwen2ForProcessRewardModel(Qwen2RewardBaseModel):
def __init__(self, *, vllm_config, prefix=""):
vllm_config.model_config.hf_config.num_labels = 2
super().__init__(vllm_config=vllm_config, prefix=prefix)
pooler_config = vllm_config.model_config.pooler_config
self._pooler = Pooler.from_config_with_defaults(
pooler_config,
pooling_type=PoolingType.STEP,
normalize=False,
softmax=True,
step_tag_id=151651,
)